ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icc0r Unicode version

Theorem icc0r 9649
Description: An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.)
Assertion
Ref Expression
icc0r  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  ( A [,] B )  =  (/) ) )

Proof of Theorem icc0r
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xrletr 9531 . . . . . . 7  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  x  /\  x  <_  B )  ->  A  <_  B
) )
213com23 1170 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <_  x  /\  x  <_  B )  ->  A  <_  B
) )
323expa 1164 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  <_  x  /\  x  <_  B
)  ->  A  <_  B ) )
43rexlimdva 2524 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <_  B )  ->  A  <_  B ) )
5 xrlenlt 7793 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
64, 5sylibd 148 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <_  B )  ->  -.  B  <  A ) )
76con2d 596 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B ) ) )
8 iccval 9643 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,] B )  =  { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) } )
98eqeq1d 2124 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/) ) )
10 rabeq0 3360 . . . 4  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/)  <->  A. x  e.  RR*  -.  ( A  <_  x  /\  x  <_  B ) )
11 ralnex 2401 . . . 4  |-  ( A. x  e.  RR*  -.  ( A  <_  x  /\  x  <_  B )  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) )
1210, 11bitri 183 . . 3  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) )
139, 12syl6bb 195 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) ) )
147, 13sylibrd 168 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  ( A [,] B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   A.wral 2391   E.wrex 2392   {crab 2395   (/)c0 3331   class class class wbr 3897  (class class class)co 5740   RR*cxr 7763    < clt 7764    <_ cle 7765   [,]cicc 9614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-po 4186  df-iso 4187  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-icc 9618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator