ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icc0r Unicode version

Theorem icc0r 9739
Description: An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.)
Assertion
Ref Expression
icc0r  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  ( A [,] B )  =  (/) ) )

Proof of Theorem icc0r
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xrletr 9621 . . . . . . 7  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  x  /\  x  <_  B )  ->  A  <_  B
) )
213com23 1188 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <_  x  /\  x  <_  B )  ->  A  <_  B
) )
323expa 1182 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  <_  x  /\  x  <_  B
)  ->  A  <_  B ) )
43rexlimdva 2552 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <_  B )  ->  A  <_  B ) )
5 xrlenlt 7853 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
64, 5sylibd 148 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <_  B )  ->  -.  B  <  A ) )
76con2d 614 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B ) ) )
8 iccval 9733 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,] B )  =  { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) } )
98eqeq1d 2149 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/) ) )
10 rabeq0 3397 . . . 4  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/)  <->  A. x  e.  RR*  -.  ( A  <_  x  /\  x  <_  B ) )
11 ralnex 2427 . . . 4  |-  ( A. x  e.  RR*  -.  ( A  <_  x  /\  x  <_  B )  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) )
1210, 11bitri 183 . . 3  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) )
139, 12syl6bb 195 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) ) )
147, 13sylibrd 168 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  ( A [,] B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   {crab 2421   (/)c0 3368   class class class wbr 3937  (class class class)co 5782   RR*cxr 7823    < clt 7824    <_ cle 7825   [,]cicc 9704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-icc 9708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator