ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icc0r Unicode version

Theorem icc0r 10118
Description: An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.)
Assertion
Ref Expression
icc0r  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  ( A [,] B )  =  (/) ) )

Proof of Theorem icc0r
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xrletr 10000 . . . . . . 7  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  x  /\  x  <_  B )  ->  A  <_  B
) )
213com23 1233 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <_  x  /\  x  <_  B )  ->  A  <_  B
) )
323expa 1227 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  <_  x  /\  x  <_  B
)  ->  A  <_  B ) )
43rexlimdva 2648 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <_  B )  ->  A  <_  B ) )
5 xrlenlt 8207 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
64, 5sylibd 149 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <_  B )  ->  -.  B  <  A ) )
76con2d 627 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B ) ) )
8 iccval 10112 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,] B )  =  { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) } )
98eqeq1d 2238 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/) ) )
10 rabeq0 3521 . . . 4  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/)  <->  A. x  e.  RR*  -.  ( A  <_  x  /\  x  <_  B ) )
11 ralnex 2518 . . . 4  |-  ( A. x  e.  RR*  -.  ( A  <_  x  /\  x  <_  B )  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) )
1210, 11bitri 184 . . 3  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) )
139, 12bitrdi 196 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) ) )
147, 13sylibrd 169 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  ( A [,] B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   (/)c0 3491   class class class wbr 4082  (class class class)co 6000   RR*cxr 8176    < clt 8177    <_ cle 8178   [,]cicc 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-icc 10087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator