Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raluz | GIF version |
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
raluz | ⊢ (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 9470 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) | |
2 | 1 | imbi1d 230 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑))) |
3 | impexp 261 | . . 3 ⊢ (((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) | |
4 | 2, 3 | bitrdi 195 | . 2 ⊢ (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
5 | 4 | ralbidv2 2468 | 1 ⊢ (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 ∀wral 2444 class class class wbr 3982 ‘cfv 5188 ≤ cle 7934 ℤcz 9191 ℤ≥cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-neg 8072 df-z 9192 df-uz 9467 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |