ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raluz GIF version

Theorem raluz 9400
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
raluz (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem raluz
StepHypRef Expression
1 eluz1 9354 . . . 4 (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ𝑀) ↔ (𝑛 ∈ ℤ ∧ 𝑀𝑛)))
21imbi1d 230 . . 3 (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ ((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑)))
3 impexp 261 . . 3 (((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀𝑛𝜑)))
42, 3syl6bb 195 . 2 (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀𝑛𝜑))))
54ralbidv2 2440 1 (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1481  wral 2417   class class class wbr 3937  cfv 5131  cle 7825  cz 9078  cuz 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-cnex 7735  ax-resscn 7736
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-neg 7960  df-z 9079  df-uz 9351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator