| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resima2 | GIF version | ||
| Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| resima2 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4731 | . 2 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran ((𝐴 ↾ 𝐶) ↾ 𝐵) | |
| 2 | resres 5016 | . . . 4 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
| 3 | 2 | rneqi 4951 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
| 4 | df-ss 3210 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∩ 𝐶) = 𝐵) | |
| 5 | incom 3396 | . . . . . . . 8 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 6 | 5 | a1i 9 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶)) |
| 7 | 6 | reseq2d 5004 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ (𝐵 ∩ 𝐶))) |
| 8 | 7 | rneqd 4952 | . . . . 5 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = ran (𝐴 ↾ (𝐵 ∩ 𝐶))) |
| 9 | reseq2 4999 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ↾ 𝐵)) | |
| 10 | 9 | rneqd 4952 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵 ∩ 𝐶)) = ran (𝐴 ↾ 𝐵)) |
| 11 | df-ima 4731 | . . . . . 6 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 12 | 10, 11 | eqtr4di 2280 | . . . . 5 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 “ 𝐵)) |
| 13 | 8, 12 | eqtrd 2262 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 “ 𝐵)) |
| 14 | 4, 13 | sylbi 121 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 “ 𝐵)) |
| 15 | 3, 14 | eqtrid 2274 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 “ 𝐵)) |
| 16 | 1, 15 | eqtrid 2274 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∩ cin 3196 ⊆ wss 3197 ran crn 4719 ↾ cres 4720 “ cima 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 |
| This theorem is referenced by: cnptopresti 14906 cnptoprest 14907 |
| Copyright terms: Public domain | W3C validator |