Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resima2 | GIF version |
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
resima2 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4633 | . 2 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran ((𝐴 ↾ 𝐶) ↾ 𝐵) | |
2 | resres 4912 | . . . 4 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
3 | 2 | rneqi 4848 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
4 | df-ss 3140 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∩ 𝐶) = 𝐵) | |
5 | incom 3325 | . . . . . . . 8 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
6 | 5 | a1i 9 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶)) |
7 | 6 | reseq2d 4900 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ (𝐵 ∩ 𝐶))) |
8 | 7 | rneqd 4849 | . . . . 5 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = ran (𝐴 ↾ (𝐵 ∩ 𝐶))) |
9 | reseq2 4895 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ↾ 𝐵)) | |
10 | 9 | rneqd 4849 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵 ∩ 𝐶)) = ran (𝐴 ↾ 𝐵)) |
11 | df-ima 4633 | . . . . . 6 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
12 | 10, 11 | eqtr4di 2226 | . . . . 5 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 “ 𝐵)) |
13 | 8, 12 | eqtrd 2208 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 “ 𝐵)) |
14 | 4, 13 | sylbi 121 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 “ 𝐵)) |
15 | 3, 14 | eqtrid 2220 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 “ 𝐵)) |
16 | 1, 15 | eqtrid 2220 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∩ cin 3126 ⊆ wss 3127 ran crn 4621 ↾ cres 4622 “ cima 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 |
This theorem is referenced by: cnptopresti 13318 cnptoprest 13319 |
Copyright terms: Public domain | W3C validator |