| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resima2 | GIF version | ||
| Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| resima2 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4696 | . 2 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran ((𝐴 ↾ 𝐶) ↾ 𝐵) | |
| 2 | resres 4980 | . . . 4 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
| 3 | 2 | rneqi 4915 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
| 4 | df-ss 3183 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∩ 𝐶) = 𝐵) | |
| 5 | incom 3369 | . . . . . . . 8 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 6 | 5 | a1i 9 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶)) |
| 7 | 6 | reseq2d 4968 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ (𝐵 ∩ 𝐶))) |
| 8 | 7 | rneqd 4916 | . . . . 5 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = ran (𝐴 ↾ (𝐵 ∩ 𝐶))) |
| 9 | reseq2 4963 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ↾ 𝐵)) | |
| 10 | 9 | rneqd 4916 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵 ∩ 𝐶)) = ran (𝐴 ↾ 𝐵)) |
| 11 | df-ima 4696 | . . . . . 6 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 12 | 10, 11 | eqtr4di 2257 | . . . . 5 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 “ 𝐵)) |
| 13 | 8, 12 | eqtrd 2239 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 “ 𝐵)) |
| 14 | 4, 13 | sylbi 121 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 “ 𝐵)) |
| 15 | 3, 14 | eqtrid 2251 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 “ 𝐵)) |
| 16 | 1, 15 | eqtrid 2251 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∩ cin 3169 ⊆ wss 3170 ran crn 4684 ↾ cres 4685 “ cima 4686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 |
| This theorem is referenced by: cnptopresti 14785 cnptoprest 14786 |
| Copyright terms: Public domain | W3C validator |