![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resima2 | GIF version |
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
resima2 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4510 | . 2 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran ((𝐴 ↾ 𝐶) ↾ 𝐵) | |
2 | resres 4787 | . . . 4 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
3 | 2 | rneqi 4725 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
4 | df-ss 3048 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∩ 𝐶) = 𝐵) | |
5 | incom 3232 | . . . . . . . 8 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
6 | 5 | a1i 9 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶)) |
7 | 6 | reseq2d 4775 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ (𝐵 ∩ 𝐶))) |
8 | 7 | rneqd 4726 | . . . . 5 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = ran (𝐴 ↾ (𝐵 ∩ 𝐶))) |
9 | reseq2 4770 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ↾ 𝐵)) | |
10 | 9 | rneqd 4726 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵 ∩ 𝐶)) = ran (𝐴 ↾ 𝐵)) |
11 | df-ima 4510 | . . . . . 6 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
12 | 10, 11 | syl6eqr 2163 | . . . . 5 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 “ 𝐵)) |
13 | 8, 12 | eqtrd 2145 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 “ 𝐵)) |
14 | 4, 13 | sylbi 120 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 “ 𝐵)) |
15 | 3, 14 | syl5eq 2157 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 “ 𝐵)) |
16 | 1, 15 | syl5eq 2157 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1312 ∩ cin 3034 ⊆ wss 3035 ran crn 4498 ↾ cres 4499 “ cima 4500 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-br 3894 df-opab 3948 df-xp 4503 df-rel 4504 df-cnv 4505 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 |
This theorem is referenced by: cnptopresti 12243 cnptoprest 12244 |
Copyright terms: Public domain | W3C validator |