ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprg Unicode version

Theorem fprg 5464
Description: A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.)
Assertion
Ref Expression
fprg  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)

Proof of Theorem fprg
StepHypRef Expression
1 fnprg 5055 . 2  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }
)
2 rnsnopg 4896 . . . . . . 7  |-  ( A  e.  E  ->  ran  {
<. A ,  C >. }  =  { C }
)
32adantr 270 . . . . . 6  |-  ( ( A  e.  E  /\  B  e.  F )  ->  ran  { <. A ,  C >. }  =  { C } )
433ad2ant1 964 . . . . 5  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. }  =  { C }
)
5 rnsnopg 4896 . . . . . . 7  |-  ( B  e.  F  ->  ran  {
<. B ,  D >. }  =  { D }
)
65adantl 271 . . . . . 6  |-  ( ( A  e.  E  /\  B  e.  F )  ->  ran  { <. B ,  D >. }  =  { D } )
763ad2ant1 964 . . . . 5  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. B ,  D >. }  =  { D }
)
84, 7uneq12d 3153 . . . 4  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } ) )
9 df-pr 3448 . . . . . 6  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
109rneqi 4651 . . . . 5  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
11 rnun 4827 . . . . 5  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
1210, 11eqtri 2108 . . . 4  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
13 df-pr 3448 . . . 4  |-  { C ,  D }  =  ( { C }  u.  { D } )
148, 12, 133eqtr4g 2145 . . 3  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. }  =  { C ,  D } )
15 eqimss 3076 . . 3  |-  ( ran 
{ <. A ,  C >. ,  <. B ,  D >. }  =  { C ,  D }  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } )
1614, 15syl 14 . 2  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } )
17 df-f 5006 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } : { A ,  B } --> { C ,  D }  <->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  { <. A ,  C >. ,  <. B ,  D >. }  C_  { C ,  D } ) )
181, 16, 17sylanbrc 408 1  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 924    = wceq 1289    e. wcel 1438    =/= wne 2255    u. cun 2995    C_ wss 2997   {csn 3441   {cpr 3442   <.cop 3444   ran crn 4429    Fn wfn 4997   -->wf 4998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-fun 5004  df-fn 5005  df-f 5006
This theorem is referenced by:  ftpg  5465
  Copyright terms: Public domain W3C validator