ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprg Unicode version

Theorem fprg 5611
Description: A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.)
Assertion
Ref Expression
fprg  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)

Proof of Theorem fprg
StepHypRef Expression
1 fnprg 5186 . 2  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }
)
2 rnsnopg 5025 . . . . . . 7  |-  ( A  e.  E  ->  ran  {
<. A ,  C >. }  =  { C }
)
32adantr 274 . . . . . 6  |-  ( ( A  e.  E  /\  B  e.  F )  ->  ran  { <. A ,  C >. }  =  { C } )
433ad2ant1 1003 . . . . 5  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. }  =  { C }
)
5 rnsnopg 5025 . . . . . . 7  |-  ( B  e.  F  ->  ran  {
<. B ,  D >. }  =  { D }
)
65adantl 275 . . . . . 6  |-  ( ( A  e.  E  /\  B  e.  F )  ->  ran  { <. B ,  D >. }  =  { D } )
763ad2ant1 1003 . . . . 5  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. B ,  D >. }  =  { D }
)
84, 7uneq12d 3236 . . . 4  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } ) )
9 df-pr 3539 . . . . . 6  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
109rneqi 4775 . . . . 5  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
11 rnun 4955 . . . . 5  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
1210, 11eqtri 2161 . . . 4  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
13 df-pr 3539 . . . 4  |-  { C ,  D }  =  ( { C }  u.  { D } )
148, 12, 133eqtr4g 2198 . . 3  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. }  =  { C ,  D } )
15 eqimss 3156 . . 3  |-  ( ran 
{ <. A ,  C >. ,  <. B ,  D >. }  =  { C ,  D }  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } )
1614, 15syl 14 . 2  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } )
17 df-f 5135 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } : { A ,  B } --> { C ,  D }  <->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  { <. A ,  C >. ,  <. B ,  D >. }  C_  { C ,  D } ) )
181, 16, 17sylanbrc 414 1  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481    =/= wne 2309    u. cun 3074    C_ wss 3076   {csn 3532   {cpr 3533   <.cop 3535   ran crn 4548    Fn wfn 5126   -->wf 5127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-fn 5134  df-f 5135
This theorem is referenced by:  ftpg  5612
  Copyright terms: Public domain W3C validator