| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprg | Unicode version | ||
| Description: A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.) |
| Ref | Expression |
|---|---|
| fprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnprg 5337 |
. 2
| |
| 2 | rnsnopg 5169 |
. . . . . . 7
| |
| 3 | 2 | adantr 276 |
. . . . . 6
|
| 4 | 3 | 3ad2ant1 1021 |
. . . . 5
|
| 5 | rnsnopg 5169 |
. . . . . . 7
| |
| 6 | 5 | adantl 277 |
. . . . . 6
|
| 7 | 6 | 3ad2ant1 1021 |
. . . . 5
|
| 8 | 4, 7 | uneq12d 3332 |
. . . 4
|
| 9 | df-pr 3644 |
. . . . . 6
| |
| 10 | 9 | rneqi 4914 |
. . . . 5
|
| 11 | rnun 5099 |
. . . . 5
| |
| 12 | 10, 11 | eqtri 2227 |
. . . 4
|
| 13 | df-pr 3644 |
. . . 4
| |
| 14 | 8, 12, 13 | 3eqtr4g 2264 |
. . 3
|
| 15 | eqimss 3251 |
. . 3
| |
| 16 | 14, 15 | syl 14 |
. 2
|
| 17 | df-f 5283 |
. 2
| |
| 18 | 1, 16, 17 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 df-opab 4113 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-fun 5281 df-fn 5282 df-f 5283 |
| This theorem is referenced by: ftpg 5780 |
| Copyright terms: Public domain | W3C validator |