ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprg Unicode version

Theorem fprg 5821
Description: A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.)
Assertion
Ref Expression
fprg  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)

Proof of Theorem fprg
StepHypRef Expression
1 fnprg 5375 . 2  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }
)
2 rnsnopg 5206 . . . . . . 7  |-  ( A  e.  E  ->  ran  {
<. A ,  C >. }  =  { C }
)
32adantr 276 . . . . . 6  |-  ( ( A  e.  E  /\  B  e.  F )  ->  ran  { <. A ,  C >. }  =  { C } )
433ad2ant1 1042 . . . . 5  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. }  =  { C }
)
5 rnsnopg 5206 . . . . . . 7  |-  ( B  e.  F  ->  ran  {
<. B ,  D >. }  =  { D }
)
65adantl 277 . . . . . 6  |-  ( ( A  e.  E  /\  B  e.  F )  ->  ran  { <. B ,  D >. }  =  { D } )
763ad2ant1 1042 . . . . 5  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. B ,  D >. }  =  { D }
)
84, 7uneq12d 3359 . . . 4  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } ) )
9 df-pr 3673 . . . . . 6  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
109rneqi 4951 . . . . 5  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
11 rnun 5136 . . . . 5  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
1210, 11eqtri 2250 . . . 4  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
13 df-pr 3673 . . . 4  |-  { C ,  D }  =  ( { C }  u.  { D } )
148, 12, 133eqtr4g 2287 . . 3  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. }  =  { C ,  D } )
15 eqimss 3278 . . 3  |-  ( ran 
{ <. A ,  C >. ,  <. B ,  D >. }  =  { C ,  D }  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } )
1614, 15syl 14 . 2  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } )
17 df-f 5321 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } : { A ,  B } --> { C ,  D }  <->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  { <. A ,  C >. ,  <. B ,  D >. }  C_  { C ,  D } ) )
181, 16, 17sylanbrc 417 1  |-  ( ( ( A  e.  E  /\  B  e.  F
)  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B )  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400    u. cun 3195    C_ wss 3197   {csn 3666   {cpr 3667   <.cop 3669   ran crn 4719    Fn wfn 5312   -->wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321
This theorem is referenced by:  ftpg  5822
  Copyright terms: Public domain W3C validator