![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnsnopg | GIF version |
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
rnsnopg | ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4671 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = dom ◡{〈𝐴, 𝐵〉} | |
2 | dfdm4 4855 | . . . 4 ⊢ dom {〈𝐵, 𝐴〉} = ran ◡{〈𝐵, 𝐴〉} | |
3 | df-rn 4671 | . . . 4 ⊢ ran ◡{〈𝐵, 𝐴〉} = dom ◡◡{〈𝐵, 𝐴〉} | |
4 | cnvcnvsn 5143 | . . . . 5 ⊢ ◡◡{〈𝐵, 𝐴〉} = ◡{〈𝐴, 𝐵〉} | |
5 | 4 | dmeqi 4864 | . . . 4 ⊢ dom ◡◡{〈𝐵, 𝐴〉} = dom ◡{〈𝐴, 𝐵〉} |
6 | 2, 3, 5 | 3eqtri 2218 | . . 3 ⊢ dom {〈𝐵, 𝐴〉} = dom ◡{〈𝐴, 𝐵〉} |
7 | 1, 6 | eqtr4i 2217 | . 2 ⊢ ran {〈𝐴, 𝐵〉} = dom {〈𝐵, 𝐴〉} |
8 | dmsnopg 5138 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom {〈𝐵, 𝐴〉} = {𝐵}) | |
9 | 7, 8 | eqtrid 2238 | 1 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {csn 3619 〈cop 3622 ◡ccnv 4659 dom cdm 4660 ran crn 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-dm 4670 df-rn 4671 |
This theorem is referenced by: rnpropg 5146 rnsnop 5147 fprg 5742 |
Copyright terms: Public domain | W3C validator |