![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnsnopg | GIF version |
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
rnsnopg | ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4639 | . . 3 ⊢ ran {⟨𝐴, 𝐵⟩} = dom ◡{⟨𝐴, 𝐵⟩} | |
2 | dfdm4 4821 | . . . 4 ⊢ dom {⟨𝐵, 𝐴⟩} = ran ◡{⟨𝐵, 𝐴⟩} | |
3 | df-rn 4639 | . . . 4 ⊢ ran ◡{⟨𝐵, 𝐴⟩} = dom ◡◡{⟨𝐵, 𝐴⟩} | |
4 | cnvcnvsn 5107 | . . . . 5 ⊢ ◡◡{⟨𝐵, 𝐴⟩} = ◡{⟨𝐴, 𝐵⟩} | |
5 | 4 | dmeqi 4830 | . . . 4 ⊢ dom ◡◡{⟨𝐵, 𝐴⟩} = dom ◡{⟨𝐴, 𝐵⟩} |
6 | 2, 3, 5 | 3eqtri 2202 | . . 3 ⊢ dom {⟨𝐵, 𝐴⟩} = dom ◡{⟨𝐴, 𝐵⟩} |
7 | 1, 6 | eqtr4i 2201 | . 2 ⊢ ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐵, 𝐴⟩} |
8 | dmsnopg 5102 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom {⟨𝐵, 𝐴⟩} = {𝐵}) | |
9 | 7, 8 | eqtrid 2222 | 1 ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 {csn 3594 ⟨cop 3597 ◡ccnv 4627 dom cdm 4628 ran crn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-dm 4638 df-rn 4639 |
This theorem is referenced by: rnpropg 5110 rnsnop 5111 fprg 5701 |
Copyright terms: Public domain | W3C validator |