ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tg2 Unicode version

Theorem tg2 14296
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg2  |-  ( ( A  e.  ( topGen `  B )  /\  C  e.  A )  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem tg2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-topgen 12931 . . . . . 6  |-  topGen  =  ( x  e.  _V  |->  { y  |  y  C_  U. ( x  i^i  ~P y ) } )
21funmpt2 5297 . . . . 5  |-  Fun  topGen
3 funrel 5275 . . . . 5  |-  ( Fun  topGen  ->  Rel  topGen )
42, 3ax-mp 5 . . . 4  |-  Rel  topGen
5 relelfvdm 5590 . . . 4  |-  ( ( Rel  topGen  /\  A  e.  ( topGen `  B )
)  ->  B  e.  dom  topGen )
64, 5mpan 424 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
7 eltg2b 14290 . . . 4  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  <->  A. y  e.  A  E. x  e.  B  ( y  e.  x  /\  x  C_  A ) ) )
8 eleq1 2259 . . . . . . 7  |-  ( y  =  C  ->  (
y  e.  x  <->  C  e.  x ) )
98anbi1d 465 . . . . . 6  |-  ( y  =  C  ->  (
( y  e.  x  /\  x  C_  A )  <-> 
( C  e.  x  /\  x  C_  A ) ) )
109rexbidv 2498 . . . . 5  |-  ( y  =  C  ->  ( E. x  e.  B  ( y  e.  x  /\  x  C_  A )  <->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
1110rspccv 2865 . . . 4  |-  ( A. y  e.  A  E. x  e.  B  (
y  e.  x  /\  x  C_  A )  -> 
( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
127, 11biimtrdi 163 . . 3  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  ->  ( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) ) )
136, 12mpcom 36 . 2  |-  ( A  e.  ( topGen `  B
)  ->  ( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
1413imp 124 1  |-  ( ( A  e.  ( topGen `  B )  /\  C  e.  A )  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   _Vcvv 2763    i^i cin 3156    C_ wss 3157   ~Pcpw 3605   U.cuni 3839   dom cdm 4663   Rel wrel 4668   Fun wfun 5252   ` cfv 5258   topGenctg 12925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-topgen 12931
This theorem is referenced by:  tgclb  14301  tgcnp  14445  txlm  14515
  Copyright terms: Public domain W3C validator