ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tg2 Unicode version

Theorem tg2 13645
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg2  |-  ( ( A  e.  ( topGen `  B )  /\  C  e.  A )  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem tg2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-topgen 12714 . . . . . 6  |-  topGen  =  ( x  e.  _V  |->  { y  |  y  C_  U. ( x  i^i  ~P y ) } )
21funmpt2 5257 . . . . 5  |-  Fun  topGen
3 funrel 5235 . . . . 5  |-  ( Fun  topGen  ->  Rel  topGen )
42, 3ax-mp 5 . . . 4  |-  Rel  topGen
5 relelfvdm 5549 . . . 4  |-  ( ( Rel  topGen  /\  A  e.  ( topGen `  B )
)  ->  B  e.  dom  topGen )
64, 5mpan 424 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
7 eltg2b 13639 . . . 4  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  <->  A. y  e.  A  E. x  e.  B  ( y  e.  x  /\  x  C_  A ) ) )
8 eleq1 2240 . . . . . . 7  |-  ( y  =  C  ->  (
y  e.  x  <->  C  e.  x ) )
98anbi1d 465 . . . . . 6  |-  ( y  =  C  ->  (
( y  e.  x  /\  x  C_  A )  <-> 
( C  e.  x  /\  x  C_  A ) ) )
109rexbidv 2478 . . . . 5  |-  ( y  =  C  ->  ( E. x  e.  B  ( y  e.  x  /\  x  C_  A )  <->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
1110rspccv 2840 . . . 4  |-  ( A. y  e.  A  E. x  e.  B  (
y  e.  x  /\  x  C_  A )  -> 
( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
127, 11biimtrdi 163 . . 3  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  ->  ( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) ) )
136, 12mpcom 36 . 2  |-  ( A  e.  ( topGen `  B
)  ->  ( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
1413imp 124 1  |-  ( ( A  e.  ( topGen `  B )  /\  C  e.  A )  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   _Vcvv 2739    i^i cin 3130    C_ wss 3131   ~Pcpw 3577   U.cuni 3811   dom cdm 4628   Rel wrel 4633   Fun wfun 5212   ` cfv 5218   topGenctg 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-topgen 12714
This theorem is referenced by:  tgclb  13650  tgcnp  13794  txlm  13864
  Copyright terms: Public domain W3C validator