ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores3 Unicode version

Theorem smores3 6402
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
smores3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( A  |`  C ) )

Proof of Theorem smores3
StepHypRef Expression
1 dmres 4999 . . . . . 6  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
2 incom 3373 . . . . . 6  |-  ( B  i^i  dom  A )  =  ( dom  A  i^i  B )
31, 2eqtri 2228 . . . . 5  |-  dom  ( A  |`  B )  =  ( dom  A  i^i  B )
43eleq2i 2274 . . . 4  |-  ( C  e.  dom  ( A  |`  B )  <->  C  e.  ( dom  A  i^i  B
) )
5 smores 6401 . . . 4  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  dom  ( A  |`  B ) )  ->  Smo  ( ( A  |`  B )  |`  C ) )
64, 5sylan2br 288 . . 3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B ) )  ->  Smo  ( ( A  |`  B )  |`  C ) )
763adant3 1020 . 2  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( ( A  |`  B )  |`  C ) )
8 inss2 3402 . . . . . 6  |-  ( dom 
A  i^i  B )  C_  B
98sseli 3197 . . . . 5  |-  ( C  e.  ( dom  A  i^i  B )  ->  C  e.  B )
10 ordelss 4444 . . . . . 6  |-  ( ( Ord  B  /\  C  e.  B )  ->  C  C_  B )
1110ancoms 268 . . . . 5  |-  ( ( C  e.  B  /\  Ord  B )  ->  C  C_  B )
129, 11sylan 283 . . . 4  |-  ( ( C  e.  ( dom 
A  i^i  B )  /\  Ord  B )  ->  C  C_  B )
13123adant1 1018 . . 3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  C  C_  B
)
14 resabs1 5007 . . 3  |-  ( C 
C_  B  ->  (
( A  |`  B )  |`  C )  =  ( A  |`  C )
)
15 smoeq 6399 . . 3  |-  ( ( ( A  |`  B )  |`  C )  =  ( A  |`  C )  ->  ( Smo  ( ( A  |`  B )  |`  C )  <->  Smo  ( A  |`  C ) ) )
1613, 14, 153syl 17 . 2  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  ( Smo  ( ( A  |`  B )  |`  C )  <->  Smo  ( A  |`  C ) ) )
177, 16mpbid 147 1  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( A  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178    i^i cin 3173    C_ wss 3174   Ord word 4427   dom cdm 4693    |` cres 4695   Smo wsmo 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-tr 4159  df-iord 4431  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-smo 6395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator