| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smores3 | Unicode version | ||
| Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| smores3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5026 |
. . . . . 6
| |
| 2 | incom 3396 |
. . . . . 6
| |
| 3 | 1, 2 | eqtri 2250 |
. . . . 5
|
| 4 | 3 | eleq2i 2296 |
. . . 4
|
| 5 | smores 6438 |
. . . 4
| |
| 6 | 4, 5 | sylan2br 288 |
. . 3
|
| 7 | 6 | 3adant3 1041 |
. 2
|
| 8 | inss2 3425 |
. . . . . 6
| |
| 9 | 8 | sseli 3220 |
. . . . 5
|
| 10 | ordelss 4470 |
. . . . . 6
| |
| 11 | 10 | ancoms 268 |
. . . . 5
|
| 12 | 9, 11 | sylan 283 |
. . . 4
|
| 13 | 12 | 3adant1 1039 |
. . 3
|
| 14 | resabs1 5034 |
. . 3
| |
| 15 | smoeq 6436 |
. . 3
| |
| 16 | 13, 14, 15 | 3syl 17 |
. 2
|
| 17 | 7, 16 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-tr 4183 df-iord 4457 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-smo 6432 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |