ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores3 Unicode version

Theorem smores3 6261
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
smores3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( A  |`  C ) )

Proof of Theorem smores3
StepHypRef Expression
1 dmres 4905 . . . . . 6  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
2 incom 3314 . . . . . 6  |-  ( B  i^i  dom  A )  =  ( dom  A  i^i  B )
31, 2eqtri 2186 . . . . 5  |-  dom  ( A  |`  B )  =  ( dom  A  i^i  B )
43eleq2i 2233 . . . 4  |-  ( C  e.  dom  ( A  |`  B )  <->  C  e.  ( dom  A  i^i  B
) )
5 smores 6260 . . . 4  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  dom  ( A  |`  B ) )  ->  Smo  ( ( A  |`  B )  |`  C ) )
64, 5sylan2br 286 . . 3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B ) )  ->  Smo  ( ( A  |`  B )  |`  C ) )
763adant3 1007 . 2  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( ( A  |`  B )  |`  C ) )
8 inss2 3343 . . . . . 6  |-  ( dom 
A  i^i  B )  C_  B
98sseli 3138 . . . . 5  |-  ( C  e.  ( dom  A  i^i  B )  ->  C  e.  B )
10 ordelss 4357 . . . . . 6  |-  ( ( Ord  B  /\  C  e.  B )  ->  C  C_  B )
1110ancoms 266 . . . . 5  |-  ( ( C  e.  B  /\  Ord  B )  ->  C  C_  B )
129, 11sylan 281 . . . 4  |-  ( ( C  e.  ( dom 
A  i^i  B )  /\  Ord  B )  ->  C  C_  B )
13123adant1 1005 . . 3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  C  C_  B
)
14 resabs1 4913 . . 3  |-  ( C 
C_  B  ->  (
( A  |`  B )  |`  C )  =  ( A  |`  C )
)
15 smoeq 6258 . . 3  |-  ( ( ( A  |`  B )  |`  C )  =  ( A  |`  C )  ->  ( Smo  ( ( A  |`  B )  |`  C )  <->  Smo  ( A  |`  C ) ) )
1613, 14, 153syl 17 . 2  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  ( Smo  ( ( A  |`  B )  |`  C )  <->  Smo  ( A  |`  C ) ) )
177, 16mpbid 146 1  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( A  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    i^i cin 3115    C_ wss 3116   Ord word 4340   dom cdm 4604    |` cres 4606   Smo wsmo 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-tr 4081  df-iord 4344  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-smo 6254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator