Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smores3 | Unicode version |
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
smores3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4905 | . . . . . 6 | |
2 | incom 3314 | . . . . . 6 | |
3 | 1, 2 | eqtri 2186 | . . . . 5 |
4 | 3 | eleq2i 2233 | . . . 4 |
5 | smores 6260 | . . . 4 | |
6 | 4, 5 | sylan2br 286 | . . 3 |
7 | 6 | 3adant3 1007 | . 2 |
8 | inss2 3343 | . . . . . 6 | |
9 | 8 | sseli 3138 | . . . . 5 |
10 | ordelss 4357 | . . . . . 6 | |
11 | 10 | ancoms 266 | . . . . 5 |
12 | 9, 11 | sylan 281 | . . . 4 |
13 | 12 | 3adant1 1005 | . . 3 |
14 | resabs1 4913 | . . 3 | |
15 | smoeq 6258 | . . 3 | |
16 | 13, 14, 15 | 3syl 17 | . 2 |
17 | 7, 16 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 968 wceq 1343 wcel 2136 cin 3115 wss 3116 word 4340 cdm 4604 cres 4606 wsmo 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-iord 4344 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-smo 6254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |