| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smores3 | Unicode version | ||
| Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| smores3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 4981 |
. . . . . 6
| |
| 2 | incom 3365 |
. . . . . 6
| |
| 3 | 1, 2 | eqtri 2226 |
. . . . 5
|
| 4 | 3 | eleq2i 2272 |
. . . 4
|
| 5 | smores 6380 |
. . . 4
| |
| 6 | 4, 5 | sylan2br 288 |
. . 3
|
| 7 | 6 | 3adant3 1020 |
. 2
|
| 8 | inss2 3394 |
. . . . . 6
| |
| 9 | 8 | sseli 3189 |
. . . . 5
|
| 10 | ordelss 4427 |
. . . . . 6
| |
| 11 | 10 | ancoms 268 |
. . . . 5
|
| 12 | 9, 11 | sylan 283 |
. . . 4
|
| 13 | 12 | 3adant1 1018 |
. . 3
|
| 14 | resabs1 4989 |
. . 3
| |
| 15 | smoeq 6378 |
. . 3
| |
| 16 | 13, 14, 15 | 3syl 17 |
. 2
|
| 17 | 7, 16 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-tr 4144 df-iord 4414 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-smo 6374 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |