ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores3 Unicode version

Theorem smores3 6346
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
smores3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( A  |`  C ) )

Proof of Theorem smores3
StepHypRef Expression
1 dmres 4963 . . . . . 6  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
2 incom 3351 . . . . . 6  |-  ( B  i^i  dom  A )  =  ( dom  A  i^i  B )
31, 2eqtri 2214 . . . . 5  |-  dom  ( A  |`  B )  =  ( dom  A  i^i  B )
43eleq2i 2260 . . . 4  |-  ( C  e.  dom  ( A  |`  B )  <->  C  e.  ( dom  A  i^i  B
) )
5 smores 6345 . . . 4  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  dom  ( A  |`  B ) )  ->  Smo  ( ( A  |`  B )  |`  C ) )
64, 5sylan2br 288 . . 3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B ) )  ->  Smo  ( ( A  |`  B )  |`  C ) )
763adant3 1019 . 2  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( ( A  |`  B )  |`  C ) )
8 inss2 3380 . . . . . 6  |-  ( dom 
A  i^i  B )  C_  B
98sseli 3175 . . . . 5  |-  ( C  e.  ( dom  A  i^i  B )  ->  C  e.  B )
10 ordelss 4410 . . . . . 6  |-  ( ( Ord  B  /\  C  e.  B )  ->  C  C_  B )
1110ancoms 268 . . . . 5  |-  ( ( C  e.  B  /\  Ord  B )  ->  C  C_  B )
129, 11sylan 283 . . . 4  |-  ( ( C  e.  ( dom 
A  i^i  B )  /\  Ord  B )  ->  C  C_  B )
13123adant1 1017 . . 3  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  C  C_  B
)
14 resabs1 4971 . . 3  |-  ( C 
C_  B  ->  (
( A  |`  B )  |`  C )  =  ( A  |`  C )
)
15 smoeq 6343 . . 3  |-  ( ( ( A  |`  B )  |`  C )  =  ( A  |`  C )  ->  ( Smo  ( ( A  |`  B )  |`  C )  <->  Smo  ( A  |`  C ) ) )
1613, 14, 153syl 17 . 2  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  ( Smo  ( ( A  |`  B )  |`  C )  <->  Smo  ( A  |`  C ) ) )
177, 16mpbid 147 1  |-  ( ( Smo  ( A  |`  B )  /\  C  e.  ( dom  A  i^i  B )  /\  Ord  B
)  ->  Smo  ( A  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    i^i cin 3152    C_ wss 3153   Ord word 4393   dom cdm 4659    |` cres 4661   Smo wsmo 6338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-tr 4128  df-iord 4397  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-smo 6339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator