ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores3 GIF version

Theorem smores3 6319
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
smores3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))

Proof of Theorem smores3
StepHypRef Expression
1 dmres 4946 . . . . . 6 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 incom 3342 . . . . . 6 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
31, 2eqtri 2210 . . . . 5 dom (𝐴𝐵) = (dom 𝐴𝐵)
43eleq2i 2256 . . . 4 (𝐶 ∈ dom (𝐴𝐵) ↔ 𝐶 ∈ (dom 𝐴𝐵))
5 smores 6318 . . . 4 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ dom (𝐴𝐵)) → Smo ((𝐴𝐵) ↾ 𝐶))
64, 5sylan2br 288 . . 3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵)) → Smo ((𝐴𝐵) ↾ 𝐶))
763adant3 1019 . 2 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo ((𝐴𝐵) ↾ 𝐶))
8 inss2 3371 . . . . . 6 (dom 𝐴𝐵) ⊆ 𝐵
98sseli 3166 . . . . 5 (𝐶 ∈ (dom 𝐴𝐵) → 𝐶𝐵)
10 ordelss 4397 . . . . . 6 ((Ord 𝐵𝐶𝐵) → 𝐶𝐵)
1110ancoms 268 . . . . 5 ((𝐶𝐵 ∧ Ord 𝐵) → 𝐶𝐵)
129, 11sylan 283 . . . 4 ((𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → 𝐶𝐵)
13123adant1 1017 . . 3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → 𝐶𝐵)
14 resabs1 4954 . . 3 (𝐶𝐵 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐶))
15 smoeq 6316 . . 3 (((𝐴𝐵) ↾ 𝐶) = (𝐴𝐶) → (Smo ((𝐴𝐵) ↾ 𝐶) ↔ Smo (𝐴𝐶)))
1613, 14, 153syl 17 . 2 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → (Smo ((𝐴𝐵) ↾ 𝐶) ↔ Smo (𝐴𝐶)))
177, 16mpbid 147 1 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2160  cin 3143  wss 3144  Ord word 4380  dom cdm 4644  cres 4646  Smo wsmo 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-tr 4117  df-iord 4384  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-smo 6312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator