ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores3 GIF version

Theorem smores3 6197
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
smores3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))

Proof of Theorem smores3
StepHypRef Expression
1 dmres 4847 . . . . . 6 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 incom 3272 . . . . . 6 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
31, 2eqtri 2161 . . . . 5 dom (𝐴𝐵) = (dom 𝐴𝐵)
43eleq2i 2207 . . . 4 (𝐶 ∈ dom (𝐴𝐵) ↔ 𝐶 ∈ (dom 𝐴𝐵))
5 smores 6196 . . . 4 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ dom (𝐴𝐵)) → Smo ((𝐴𝐵) ↾ 𝐶))
64, 5sylan2br 286 . . 3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵)) → Smo ((𝐴𝐵) ↾ 𝐶))
763adant3 1002 . 2 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo ((𝐴𝐵) ↾ 𝐶))
8 inss2 3301 . . . . . 6 (dom 𝐴𝐵) ⊆ 𝐵
98sseli 3097 . . . . 5 (𝐶 ∈ (dom 𝐴𝐵) → 𝐶𝐵)
10 ordelss 4308 . . . . . 6 ((Ord 𝐵𝐶𝐵) → 𝐶𝐵)
1110ancoms 266 . . . . 5 ((𝐶𝐵 ∧ Ord 𝐵) → 𝐶𝐵)
129, 11sylan 281 . . . 4 ((𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → 𝐶𝐵)
13123adant1 1000 . . 3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → 𝐶𝐵)
14 resabs1 4855 . . 3 (𝐶𝐵 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐶))
15 smoeq 6194 . . 3 (((𝐴𝐵) ↾ 𝐶) = (𝐴𝐶) → (Smo ((𝐴𝐵) ↾ 𝐶) ↔ Smo (𝐴𝐶)))
1613, 14, 153syl 17 . 2 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → (Smo ((𝐴𝐵) ↾ 𝐶) ↔ Smo (𝐴𝐶)))
177, 16mpbid 146 1 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 963   = wceq 1332  wcel 1481  cin 3074  wss 3075  Ord word 4291  dom cdm 4546  cres 4548  Smo wsmo 6189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-tr 4034  df-iord 4295  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-smo 6190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator