ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores3 GIF version

Theorem smores3 6379
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
smores3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))

Proof of Theorem smores3
StepHypRef Expression
1 dmres 4980 . . . . . 6 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 incom 3365 . . . . . 6 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
31, 2eqtri 2226 . . . . 5 dom (𝐴𝐵) = (dom 𝐴𝐵)
43eleq2i 2272 . . . 4 (𝐶 ∈ dom (𝐴𝐵) ↔ 𝐶 ∈ (dom 𝐴𝐵))
5 smores 6378 . . . 4 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ dom (𝐴𝐵)) → Smo ((𝐴𝐵) ↾ 𝐶))
64, 5sylan2br 288 . . 3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵)) → Smo ((𝐴𝐵) ↾ 𝐶))
763adant3 1020 . 2 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo ((𝐴𝐵) ↾ 𝐶))
8 inss2 3394 . . . . . 6 (dom 𝐴𝐵) ⊆ 𝐵
98sseli 3189 . . . . 5 (𝐶 ∈ (dom 𝐴𝐵) → 𝐶𝐵)
10 ordelss 4426 . . . . . 6 ((Ord 𝐵𝐶𝐵) → 𝐶𝐵)
1110ancoms 268 . . . . 5 ((𝐶𝐵 ∧ Ord 𝐵) → 𝐶𝐵)
129, 11sylan 283 . . . 4 ((𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → 𝐶𝐵)
13123adant1 1018 . . 3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → 𝐶𝐵)
14 resabs1 4988 . . 3 (𝐶𝐵 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐶))
15 smoeq 6376 . . 3 (((𝐴𝐵) ↾ 𝐶) = (𝐴𝐶) → (Smo ((𝐴𝐵) ↾ 𝐶) ↔ Smo (𝐴𝐶)))
1613, 14, 153syl 17 . 2 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → (Smo ((𝐴𝐵) ↾ 𝐶) ↔ Smo (𝐴𝐶)))
177, 16mpbid 147 1 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981   = wceq 1373  wcel 2176  cin 3165  wss 3166  Ord word 4409  dom cdm 4675  cres 4677  Smo wsmo 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-tr 4143  df-iord 4413  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-smo 6372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator