![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > smores3 | GIF version |
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
smores3 | ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4930 | . . . . . 6 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
2 | incom 3329 | . . . . . 6 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
3 | 1, 2 | eqtri 2198 | . . . . 5 ⊢ dom (𝐴 ↾ 𝐵) = (dom 𝐴 ∩ 𝐵) |
4 | 3 | eleq2i 2244 | . . . 4 ⊢ (𝐶 ∈ dom (𝐴 ↾ 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∩ 𝐵)) |
5 | smores 6295 | . . . 4 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ dom (𝐴 ↾ 𝐵)) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) | |
6 | 4, 5 | sylan2br 288 | . . 3 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵)) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) |
7 | 6 | 3adant3 1017 | . 2 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) |
8 | inss2 3358 | . . . . . 6 ⊢ (dom 𝐴 ∩ 𝐵) ⊆ 𝐵 | |
9 | 8 | sseli 3153 | . . . . 5 ⊢ (𝐶 ∈ (dom 𝐴 ∩ 𝐵) → 𝐶 ∈ 𝐵) |
10 | ordelss 4381 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ⊆ 𝐵) | |
11 | 10 | ancoms 268 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
12 | 9, 11 | sylan 283 | . . . 4 ⊢ ((𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
13 | 12 | 3adant1 1015 | . . 3 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
14 | resabs1 4938 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐶)) | |
15 | smoeq 6293 | . . 3 ⊢ (((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐶) → (Smo ((𝐴 ↾ 𝐵) ↾ 𝐶) ↔ Smo (𝐴 ↾ 𝐶))) | |
16 | 13, 14, 15 | 3syl 17 | . 2 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → (Smo ((𝐴 ↾ 𝐵) ↾ 𝐶) ↔ Smo (𝐴 ↾ 𝐶))) |
17 | 7, 16 | mpbid 147 | 1 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∩ cin 3130 ⊆ wss 3131 Ord word 4364 dom cdm 4628 ↾ cres 4630 Smo wsmo 6288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-tr 4104 df-iord 4368 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-smo 6289 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |