Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smores3 | GIF version |
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
smores3 | ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4910 | . . . . . 6 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
2 | incom 3319 | . . . . . 6 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
3 | 1, 2 | eqtri 2191 | . . . . 5 ⊢ dom (𝐴 ↾ 𝐵) = (dom 𝐴 ∩ 𝐵) |
4 | 3 | eleq2i 2237 | . . . 4 ⊢ (𝐶 ∈ dom (𝐴 ↾ 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∩ 𝐵)) |
5 | smores 6268 | . . . 4 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ dom (𝐴 ↾ 𝐵)) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) | |
6 | 4, 5 | sylan2br 286 | . . 3 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵)) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) |
7 | 6 | 3adant3 1012 | . 2 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) |
8 | inss2 3348 | . . . . . 6 ⊢ (dom 𝐴 ∩ 𝐵) ⊆ 𝐵 | |
9 | 8 | sseli 3143 | . . . . 5 ⊢ (𝐶 ∈ (dom 𝐴 ∩ 𝐵) → 𝐶 ∈ 𝐵) |
10 | ordelss 4362 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ⊆ 𝐵) | |
11 | 10 | ancoms 266 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
12 | 9, 11 | sylan 281 | . . . 4 ⊢ ((𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
13 | 12 | 3adant1 1010 | . . 3 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
14 | resabs1 4918 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐶)) | |
15 | smoeq 6266 | . . 3 ⊢ (((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐶) → (Smo ((𝐴 ↾ 𝐵) ↾ 𝐶) ↔ Smo (𝐴 ↾ 𝐶))) | |
16 | 13, 14, 15 | 3syl 17 | . 2 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → (Smo ((𝐴 ↾ 𝐵) ↾ 𝐶) ↔ Smo (𝐴 ↾ 𝐶))) |
17 | 7, 16 | mpbid 146 | 1 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∩ cin 3120 ⊆ wss 3121 Ord word 4345 dom cdm 4609 ↾ cres 4611 Smo wsmo 6261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-tr 4086 df-iord 4349 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-smo 6262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |