ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfvd Unicode version

Theorem strslfvd 12506
Description: Deduction version of strslfv 12509. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfvd.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfvd.s  |-  ( ph  ->  S  e.  V )
strfvd.f  |-  ( ph  ->  Fun  S )
strfvd.n  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
Assertion
Ref Expression
strslfvd  |-  ( ph  ->  C  =  ( E `
 S ) )

Proof of Theorem strslfvd
StepHypRef Expression
1 strslfvd.e . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
21simpli 111 . . 3  |-  E  = Slot  ( E `  ndx )
3 strfvd.s . . 3  |-  ( ph  ->  S  e.  V )
41simpri 113 . . . 4  |-  ( E `
 ndx )  e.  NN
54a1i 9 . . 3  |-  ( ph  ->  ( E `  ndx )  e.  NN )
62, 3, 5strnfvnd 12484 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
7 strfvd.f . . 3  |-  ( ph  ->  Fun  S )
8 strfvd.n . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
9 funopfv 5557 . . 3  |-  ( Fun 
S  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  ->  ( S `  ( E `  ndx ) )  =  C ) )
107, 8, 9sylc 62 . 2  |-  ( ph  ->  ( S `  ( E `  ndx ) )  =  C )
116, 10eqtr2d 2211 1  |-  ( ph  ->  C  =  ( E `
 S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   <.cop 3597   Fun wfun 5212   ` cfv 5218   NNcn 8921   ndxcnx 12461  Slot cslot 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fv 5226  df-slot 12468
This theorem is referenced by:  strslssd  12511  1strbas  12578  2strbasg  12580  2stropg  12581
  Copyright terms: Public domain W3C validator