ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfvd Unicode version

Theorem strslfvd 12793
Description: Deduction version of strslfv 12796. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfvd.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfvd.s  |-  ( ph  ->  S  e.  V )
strfvd.f  |-  ( ph  ->  Fun  S )
strfvd.n  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
Assertion
Ref Expression
strslfvd  |-  ( ph  ->  C  =  ( E `
 S ) )

Proof of Theorem strslfvd
StepHypRef Expression
1 strslfvd.e . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
21simpli 111 . . 3  |-  E  = Slot  ( E `  ndx )
3 strfvd.s . . 3  |-  ( ph  ->  S  e.  V )
41simpri 113 . . . 4  |-  ( E `
 ndx )  e.  NN
54a1i 9 . . 3  |-  ( ph  ->  ( E `  ndx )  e.  NN )
62, 3, 5strnfvnd 12771 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
7 strfvd.f . . 3  |-  ( ph  ->  Fun  S )
8 strfvd.n . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
9 funopfv 5612 . . 3  |-  ( Fun 
S  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  ->  ( S `  ( E `  ndx ) )  =  C ) )
107, 8, 9sylc 62 . 2  |-  ( ph  ->  ( S `  ( E `  ndx ) )  =  C )
116, 10eqtr2d 2238 1  |-  ( ph  ->  C  =  ( E `
 S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   <.cop 3635   Fun wfun 5262   ` cfv 5268   NNcn 9018   ndxcnx 12748  Slot cslot 12750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fv 5276  df-slot 12755
This theorem is referenced by:  strslssd  12798  1strbas  12868  2strbasg  12870  2stropg  12871
  Copyright terms: Public domain W3C validator