ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfvd Unicode version

Theorem strslfvd 12949
Description: Deduction version of strslfv 12952. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfvd.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfvd.s  |-  ( ph  ->  S  e.  V )
strfvd.f  |-  ( ph  ->  Fun  S )
strfvd.n  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
Assertion
Ref Expression
strslfvd  |-  ( ph  ->  C  =  ( E `
 S ) )

Proof of Theorem strslfvd
StepHypRef Expression
1 strslfvd.e . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
21simpli 111 . . 3  |-  E  = Slot  ( E `  ndx )
3 strfvd.s . . 3  |-  ( ph  ->  S  e.  V )
41simpri 113 . . . 4  |-  ( E `
 ndx )  e.  NN
54a1i 9 . . 3  |-  ( ph  ->  ( E `  ndx )  e.  NN )
62, 3, 5strnfvnd 12927 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
7 strfvd.f . . 3  |-  ( ph  ->  Fun  S )
8 strfvd.n . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
9 funopfv 5631 . . 3  |-  ( Fun 
S  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  ->  ( S `  ( E `  ndx ) )  =  C ) )
107, 8, 9sylc 62 . 2  |-  ( ph  ->  ( S `  ( E `  ndx ) )  =  C )
116, 10eqtr2d 2240 1  |-  ( ph  ->  C  =  ( E `
 S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   <.cop 3641   Fun wfun 5274   ` cfv 5280   NNcn 9056   ndxcnx 12904  Slot cslot 12906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fv 5288  df-slot 12911
This theorem is referenced by:  strslssd  12954  1strbas  13024  2strbasg  13027  2stropg  13028
  Copyright terms: Public domain W3C validator