| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strslfv3 | Unicode version | ||
| Description: Variant on strslfv 13072 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| Ref | Expression |
|---|---|
| strfv3.u |
|
| strslfv3.s |
|
| strslfv3.e |
|
| strslfv3.n |
|
| strfv3.c |
|
| strfv3.a |
|
| Ref | Expression |
|---|---|
| strslfv3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv3.a |
. 2
| |
| 2 | strslfv3.e |
. . 3
| |
| 3 | strfv3.u |
. . . 4
| |
| 4 | strslfv3.s |
. . . . 5
| |
| 5 | structex 13039 |
. . . . 5
| |
| 6 | 4, 5 | syl 14 |
. . . 4
|
| 7 | 3, 6 | eqeltrd 2306 |
. . 3
|
| 8 | structfung 13044 |
. . . . 5
| |
| 9 | 4, 8 | syl 14 |
. . . 4
|
| 10 | 3 | cnveqd 4897 |
. . . . . 6
|
| 11 | 10 | cnveqd 4897 |
. . . . 5
|
| 12 | 11 | funeqd 5339 |
. . . 4
|
| 13 | 9, 12 | mpbird 167 |
. . 3
|
| 14 | strslfv3.n |
. . . . 5
| |
| 15 | 2 | simpri 113 |
. . . . . . 7
|
| 16 | strfv3.c |
. . . . . . 7
| |
| 17 | opexg 4313 |
. . . . . . 7
| |
| 18 | 15, 16, 17 | sylancr 414 |
. . . . . 6
|
| 19 | snssg 3801 |
. . . . . 6
| |
| 20 | 18, 19 | syl 14 |
. . . . 5
|
| 21 | 14, 20 | mpbird 167 |
. . . 4
|
| 22 | 21, 3 | eleqtrrd 2309 |
. . 3
|
| 23 | 2, 7, 13, 22, 16 | strslfv2d 13070 |
. 2
|
| 24 | 1, 23 | eqtr4id 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-struct 13029 df-slot 13031 |
| This theorem is referenced by: prdsbaslemss 13302 |
| Copyright terms: Public domain | W3C validator |