ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv3 Unicode version

Theorem strslfv3 12797
Description: Variant on strslfv 12796 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv3.u  |-  ( ph  ->  U  =  S )
strslfv3.s  |-  ( ph  ->  S Struct  X )
strslfv3.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strslfv3.n  |-  ( ph  ->  { <. ( E `  ndx ) ,  C >. } 
C_  S )
strfv3.c  |-  ( ph  ->  C  e.  V )
strfv3.a  |-  A  =  ( E `  U
)
Assertion
Ref Expression
strslfv3  |-  ( ph  ->  A  =  C )

Proof of Theorem strslfv3
StepHypRef Expression
1 strfv3.a . 2  |-  A  =  ( E `  U
)
2 strslfv3.e . . 3  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
3 strfv3.u . . . 4  |-  ( ph  ->  U  =  S )
4 strslfv3.s . . . . 5  |-  ( ph  ->  S Struct  X )
5 structex 12763 . . . . 5  |-  ( S Struct  X  ->  S  e.  _V )
64, 5syl 14 . . . 4  |-  ( ph  ->  S  e.  _V )
73, 6eqeltrd 2281 . . 3  |-  ( ph  ->  U  e.  _V )
8 structfung 12768 . . . . 5  |-  ( S Struct  X  ->  Fun  `' `' S )
94, 8syl 14 . . . 4  |-  ( ph  ->  Fun  `' `' S
)
103cnveqd 4852 . . . . . 6  |-  ( ph  ->  `' U  =  `' S )
1110cnveqd 4852 . . . . 5  |-  ( ph  ->  `' `' U  =  `' `' S )
1211funeqd 5290 . . . 4  |-  ( ph  ->  ( Fun  `' `' U 
<->  Fun  `' `' S
) )
139, 12mpbird 167 . . 3  |-  ( ph  ->  Fun  `' `' U
)
14 strslfv3.n . . . . 5  |-  ( ph  ->  { <. ( E `  ndx ) ,  C >. } 
C_  S )
152simpri 113 . . . . . . 7  |-  ( E `
 ndx )  e.  NN
16 strfv3.c . . . . . . 7  |-  ( ph  ->  C  e.  V )
17 opexg 4271 . . . . . . 7  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
1815, 16, 17sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e. 
_V )
19 snssg 3766 . . . . . 6  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  {
<. ( E `  ndx ) ,  C >. } 
C_  S ) )
2018, 19syl 14 . . . . 5  |-  ( ph  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  { <. ( E `  ndx ) ,  C >. } 
C_  S ) )
2114, 20mpbird 167 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
2221, 3eleqtrrd 2284 . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  U )
232, 7, 13, 22, 16strslfv2d 12794 . 2  |-  ( ph  ->  C  =  ( E `
 U ) )
241, 23eqtr4id 2256 1  |-  ( ph  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   _Vcvv 2771    C_ wss 3165   {csn 3632   <.cop 3635   class class class wbr 4043   `'ccnv 4672   Fun wfun 5262   ` cfv 5268   NNcn 9018   Struct cstr 12747   ndxcnx 12748  Slot cslot 12750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fv 5276  df-struct 12753  df-slot 12755
This theorem is referenced by:  prdsbaslemss  13024
  Copyright terms: Public domain W3C validator