ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv3 Unicode version

Theorem strslfv3 12667
Description: Variant on strslfv 12666 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv3.u  |-  ( ph  ->  U  =  S )
strfv3.s  |-  S Struct  X
strslfv3.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv3.n  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
strfv3.c  |-  ( ph  ->  C  e.  V )
strfv3.a  |-  A  =  ( E `  U
)
Assertion
Ref Expression
strslfv3  |-  ( ph  ->  A  =  C )

Proof of Theorem strslfv3
StepHypRef Expression
1 strfv3.a . 2  |-  A  =  ( E `  U
)
2 strfv3.c . . . 4  |-  ( ph  ->  C  e.  V )
3 strfv3.s . . . . 5  |-  S Struct  X
4 strslfv3.e . . . . 5  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
5 strfv3.n . . . . 5  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
63, 4, 5strslfv 12666 . . . 4  |-  ( C  e.  V  ->  C  =  ( E `  S ) )
72, 6syl 14 . . 3  |-  ( ph  ->  C  =  ( E `
 S ) )
8 strfv3.u . . . 4  |-  ( ph  ->  U  =  S )
98fveq2d 5559 . . 3  |-  ( ph  ->  ( E `  U
)  =  ( E `
 S ) )
107, 9eqtr4d 2229 . 2  |-  ( ph  ->  C  =  ( E `
 U ) )
111, 10eqtr4id 2245 1  |-  ( ph  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    C_ wss 3154   {csn 3619   <.cop 3622   class class class wbr 4030   ` cfv 5255   NNcn 8984   Struct cstr 12617   ndxcnx 12618  Slot cslot 12620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-struct 12623  df-slot 12625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator