ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv3 Unicode version

Theorem strslfv3 12953
Description: Variant on strslfv 12952 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv3.u  |-  ( ph  ->  U  =  S )
strslfv3.s  |-  ( ph  ->  S Struct  X )
strslfv3.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strslfv3.n  |-  ( ph  ->  { <. ( E `  ndx ) ,  C >. } 
C_  S )
strfv3.c  |-  ( ph  ->  C  e.  V )
strfv3.a  |-  A  =  ( E `  U
)
Assertion
Ref Expression
strslfv3  |-  ( ph  ->  A  =  C )

Proof of Theorem strslfv3
StepHypRef Expression
1 strfv3.a . 2  |-  A  =  ( E `  U
)
2 strslfv3.e . . 3  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
3 strfv3.u . . . 4  |-  ( ph  ->  U  =  S )
4 strslfv3.s . . . . 5  |-  ( ph  ->  S Struct  X )
5 structex 12919 . . . . 5  |-  ( S Struct  X  ->  S  e.  _V )
64, 5syl 14 . . . 4  |-  ( ph  ->  S  e.  _V )
73, 6eqeltrd 2283 . . 3  |-  ( ph  ->  U  e.  _V )
8 structfung 12924 . . . . 5  |-  ( S Struct  X  ->  Fun  `' `' S )
94, 8syl 14 . . . 4  |-  ( ph  ->  Fun  `' `' S
)
103cnveqd 4862 . . . . . 6  |-  ( ph  ->  `' U  =  `' S )
1110cnveqd 4862 . . . . 5  |-  ( ph  ->  `' `' U  =  `' `' S )
1211funeqd 5302 . . . 4  |-  ( ph  ->  ( Fun  `' `' U 
<->  Fun  `' `' S
) )
139, 12mpbird 167 . . 3  |-  ( ph  ->  Fun  `' `' U
)
14 strslfv3.n . . . . 5  |-  ( ph  ->  { <. ( E `  ndx ) ,  C >. } 
C_  S )
152simpri 113 . . . . . . 7  |-  ( E `
 ndx )  e.  NN
16 strfv3.c . . . . . . 7  |-  ( ph  ->  C  e.  V )
17 opexg 4280 . . . . . . 7  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
1815, 16, 17sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e. 
_V )
19 snssg 3773 . . . . . 6  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  {
<. ( E `  ndx ) ,  C >. } 
C_  S ) )
2018, 19syl 14 . . . . 5  |-  ( ph  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  { <. ( E `  ndx ) ,  C >. } 
C_  S ) )
2114, 20mpbird 167 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
2221, 3eleqtrrd 2286 . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  U )
232, 7, 13, 22, 16strslfv2d 12950 . 2  |-  ( ph  ->  C  =  ( E `
 U ) )
241, 23eqtr4id 2258 1  |-  ( ph  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   _Vcvv 2773    C_ wss 3170   {csn 3638   <.cop 3641   class class class wbr 4051   `'ccnv 4682   Fun wfun 5274   ` cfv 5280   NNcn 9056   Struct cstr 12903   ndxcnx 12904  Slot cslot 12906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fv 5288  df-struct 12909  df-slot 12911
This theorem is referenced by:  prdsbaslemss  13181
  Copyright terms: Public domain W3C validator