ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv3 Unicode version

Theorem strslfv3 12461
Description: Variant on strslfv 12460 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv3.u  |-  ( ph  ->  U  =  S )
strfv3.s  |-  S Struct  X
strslfv3.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv3.n  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
strfv3.c  |-  ( ph  ->  C  e.  V )
strfv3.a  |-  A  =  ( E `  U
)
Assertion
Ref Expression
strslfv3  |-  ( ph  ->  A  =  C )

Proof of Theorem strslfv3
StepHypRef Expression
1 strfv3.a . 2  |-  A  =  ( E `  U
)
2 strfv3.c . . . 4  |-  ( ph  ->  C  e.  V )
3 strfv3.s . . . . 5  |-  S Struct  X
4 strslfv3.e . . . . 5  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
5 strfv3.n . . . . 5  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
63, 4, 5strslfv 12460 . . . 4  |-  ( C  e.  V  ->  C  =  ( E `  S ) )
72, 6syl 14 . . 3  |-  ( ph  ->  C  =  ( E `
 S ) )
8 strfv3.u . . . 4  |-  ( ph  ->  U  =  S )
98fveq2d 5500 . . 3  |-  ( ph  ->  ( E `  U
)  =  ( E `
 S ) )
107, 9eqtr4d 2206 . 2  |-  ( ph  ->  C  =  ( E `
 U ) )
111, 10eqtr4id 2222 1  |-  ( ph  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    C_ wss 3121   {csn 3583   <.cop 3586   class class class wbr 3989   ` cfv 5198   NNcn 8878   Struct cstr 12412   ndxcnx 12413  Slot cslot 12415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-struct 12418  df-slot 12420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator