ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv3 Unicode version

Theorem strslfv3 13073
Description: Variant on strslfv 13072 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv3.u  |-  ( ph  ->  U  =  S )
strslfv3.s  |-  ( ph  ->  S Struct  X )
strslfv3.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strslfv3.n  |-  ( ph  ->  { <. ( E `  ndx ) ,  C >. } 
C_  S )
strfv3.c  |-  ( ph  ->  C  e.  V )
strfv3.a  |-  A  =  ( E `  U
)
Assertion
Ref Expression
strslfv3  |-  ( ph  ->  A  =  C )

Proof of Theorem strslfv3
StepHypRef Expression
1 strfv3.a . 2  |-  A  =  ( E `  U
)
2 strslfv3.e . . 3  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
3 strfv3.u . . . 4  |-  ( ph  ->  U  =  S )
4 strslfv3.s . . . . 5  |-  ( ph  ->  S Struct  X )
5 structex 13039 . . . . 5  |-  ( S Struct  X  ->  S  e.  _V )
64, 5syl 14 . . . 4  |-  ( ph  ->  S  e.  _V )
73, 6eqeltrd 2306 . . 3  |-  ( ph  ->  U  e.  _V )
8 structfung 13044 . . . . 5  |-  ( S Struct  X  ->  Fun  `' `' S )
94, 8syl 14 . . . 4  |-  ( ph  ->  Fun  `' `' S
)
103cnveqd 4897 . . . . . 6  |-  ( ph  ->  `' U  =  `' S )
1110cnveqd 4897 . . . . 5  |-  ( ph  ->  `' `' U  =  `' `' S )
1211funeqd 5339 . . . 4  |-  ( ph  ->  ( Fun  `' `' U 
<->  Fun  `' `' S
) )
139, 12mpbird 167 . . 3  |-  ( ph  ->  Fun  `' `' U
)
14 strslfv3.n . . . . 5  |-  ( ph  ->  { <. ( E `  ndx ) ,  C >. } 
C_  S )
152simpri 113 . . . . . . 7  |-  ( E `
 ndx )  e.  NN
16 strfv3.c . . . . . . 7  |-  ( ph  ->  C  e.  V )
17 opexg 4313 . . . . . . 7  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
1815, 16, 17sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e. 
_V )
19 snssg 3801 . . . . . 6  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  {
<. ( E `  ndx ) ,  C >. } 
C_  S ) )
2018, 19syl 14 . . . . 5  |-  ( ph  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  { <. ( E `  ndx ) ,  C >. } 
C_  S ) )
2114, 20mpbird 167 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
2221, 3eleqtrrd 2309 . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  U )
232, 7, 13, 22, 16strslfv2d 13070 . 2  |-  ( ph  ->  C  =  ( E `
 U ) )
241, 23eqtr4id 2281 1  |-  ( ph  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {csn 3666   <.cop 3669   class class class wbr 4082   `'ccnv 4717   Fun wfun 5311   ` cfv 5317   NNcn 9106   Struct cstr 13023   ndxcnx 13024  Slot cslot 13026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325  df-struct 13029  df-slot 13031
This theorem is referenced by:  prdsbaslemss  13302
  Copyright terms: Public domain W3C validator