ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv3 Unicode version

Theorem strslfv3 12724
Description: Variant on strslfv 12723 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv3.u  |-  ( ph  ->  U  =  S )
strfv3.s  |-  S Struct  X
strslfv3.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv3.n  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
strfv3.c  |-  ( ph  ->  C  e.  V )
strfv3.a  |-  A  =  ( E `  U
)
Assertion
Ref Expression
strslfv3  |-  ( ph  ->  A  =  C )

Proof of Theorem strslfv3
StepHypRef Expression
1 strfv3.a . 2  |-  A  =  ( E `  U
)
2 strfv3.c . . . 4  |-  ( ph  ->  C  e.  V )
3 strfv3.s . . . . 5  |-  S Struct  X
4 strslfv3.e . . . . 5  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
5 strfv3.n . . . . 5  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
63, 4, 5strslfv 12723 . . . 4  |-  ( C  e.  V  ->  C  =  ( E `  S ) )
72, 6syl 14 . . 3  |-  ( ph  ->  C  =  ( E `
 S ) )
8 strfv3.u . . . 4  |-  ( ph  ->  U  =  S )
98fveq2d 5562 . . 3  |-  ( ph  ->  ( E `  U
)  =  ( E `
 S ) )
107, 9eqtr4d 2232 . 2  |-  ( ph  ->  C  =  ( E `
 U ) )
111, 10eqtr4id 2248 1  |-  ( ph  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   {csn 3622   <.cop 3625   class class class wbr 4033   ` cfv 5258   NNcn 8990   Struct cstr 12674   ndxcnx 12675  Slot cslot 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-struct 12680  df-slot 12682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator