ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv3 Unicode version

Theorem strslfv3 12749
Description: Variant on strslfv 12748 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv3.u  |-  ( ph  ->  U  =  S )
strslfv3.s  |-  ( ph  ->  S Struct  X )
strslfv3.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strslfv3.n  |-  ( ph  ->  { <. ( E `  ndx ) ,  C >. } 
C_  S )
strfv3.c  |-  ( ph  ->  C  e.  V )
strfv3.a  |-  A  =  ( E `  U
)
Assertion
Ref Expression
strslfv3  |-  ( ph  ->  A  =  C )

Proof of Theorem strslfv3
StepHypRef Expression
1 strfv3.a . 2  |-  A  =  ( E `  U
)
2 strslfv3.e . . 3  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
3 strfv3.u . . . 4  |-  ( ph  ->  U  =  S )
4 strslfv3.s . . . . 5  |-  ( ph  ->  S Struct  X )
5 structex 12715 . . . . 5  |-  ( S Struct  X  ->  S  e.  _V )
64, 5syl 14 . . . 4  |-  ( ph  ->  S  e.  _V )
73, 6eqeltrd 2273 . . 3  |-  ( ph  ->  U  e.  _V )
8 structfung 12720 . . . . 5  |-  ( S Struct  X  ->  Fun  `' `' S )
94, 8syl 14 . . . 4  |-  ( ph  ->  Fun  `' `' S
)
103cnveqd 4843 . . . . . 6  |-  ( ph  ->  `' U  =  `' S )
1110cnveqd 4843 . . . . 5  |-  ( ph  ->  `' `' U  =  `' `' S )
1211funeqd 5281 . . . 4  |-  ( ph  ->  ( Fun  `' `' U 
<->  Fun  `' `' S
) )
139, 12mpbird 167 . . 3  |-  ( ph  ->  Fun  `' `' U
)
14 strslfv3.n . . . . 5  |-  ( ph  ->  { <. ( E `  ndx ) ,  C >. } 
C_  S )
152simpri 113 . . . . . . 7  |-  ( E `
 ndx )  e.  NN
16 strfv3.c . . . . . . 7  |-  ( ph  ->  C  e.  V )
17 opexg 4262 . . . . . . 7  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
1815, 16, 17sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e. 
_V )
19 snssg 3757 . . . . . 6  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  {
<. ( E `  ndx ) ,  C >. } 
C_  S ) )
2018, 19syl 14 . . . . 5  |-  ( ph  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  { <. ( E `  ndx ) ,  C >. } 
C_  S ) )
2114, 20mpbird 167 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
2221, 3eleqtrrd 2276 . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  U )
232, 7, 13, 22, 16strslfv2d 12746 . 2  |-  ( ph  ->  C  =  ( E `
 U ) )
241, 23eqtr4id 2248 1  |-  ( ph  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   {csn 3623   <.cop 3626   class class class wbr 4034   `'ccnv 4663   Fun wfun 5253   ` cfv 5259   NNcn 9007   Struct cstr 12699   ndxcnx 12700  Slot cslot 12702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-struct 12705  df-slot 12707
This theorem is referenced by:  prdsbaslemss  12976
  Copyright terms: Public domain W3C validator