ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslssd GIF version

Theorem strslssd 11848
Description: Deduction version of strslss 11849. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypotheses
Ref Expression
strslssd.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strssd.t (𝜑𝑇𝑉)
strssd.f (𝜑 → Fun 𝑇)
strssd.s (𝜑𝑆𝑇)
strssd.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
Assertion
Ref Expression
strslssd (𝜑 → (𝐸𝑇) = (𝐸𝑆))

Proof of Theorem strslssd
StepHypRef Expression
1 strslssd.e . . 3 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
2 strssd.t . . 3 (𝜑𝑇𝑉)
3 strssd.f . . 3 (𝜑 → Fun 𝑇)
4 strssd.s . . . 4 (𝜑𝑆𝑇)
5 strssd.n . . . 4 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
64, 5sseldd 3064 . . 3 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑇)
71, 2, 3, 6strslfvd 11843 . 2 (𝜑𝐶 = (𝐸𝑇))
82, 4ssexd 4028 . . 3 (𝜑𝑆 ∈ V)
9 funss 5100 . . . 4 (𝑆𝑇 → (Fun 𝑇 → Fun 𝑆))
104, 3, 9sylc 62 . . 3 (𝜑 → Fun 𝑆)
111, 8, 10, 5strslfvd 11843 . 2 (𝜑𝐶 = (𝐸𝑆))
127, 11eqtr3d 2149 1 (𝜑 → (𝐸𝑇) = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  Vcvv 2657  wss 3037  cop 3496  Fun wfun 5075  cfv 5081  cn 8630  ndxcnx 11799  Slot cslot 11801
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-iota 5046  df-fun 5083  df-fv 5089  df-slot 11806
This theorem is referenced by:  strslss  11849
  Copyright terms: Public domain W3C validator