| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > strslssd | GIF version | ||
| Description: Deduction version of strslss 12726. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| strslssd.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | 
| strssd.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) | 
| strssd.f | ⊢ (𝜑 → Fun 𝑇) | 
| strssd.s | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | 
| strssd.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | 
| Ref | Expression | 
|---|---|
| strslssd | ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | strslssd.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | strssd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
| 3 | strssd.f | . . 3 ⊢ (𝜑 → Fun 𝑇) | |
| 4 | strssd.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
| 5 | strssd.n | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
| 6 | 4, 5 | sseldd 3184 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑇) | 
| 7 | 1, 2, 3, 6 | strslfvd 12720 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑇)) | 
| 8 | 2, 4 | ssexd 4173 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) | 
| 9 | funss 5277 | . . . 4 ⊢ (𝑆 ⊆ 𝑇 → (Fun 𝑇 → Fun 𝑆)) | |
| 10 | 4, 3, 9 | sylc 62 | . . 3 ⊢ (𝜑 → Fun 𝑆) | 
| 11 | 1, 8, 10, 5 | strslfvd 12720 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) | 
| 12 | 7, 11 | eqtr3d 2231 | 1 ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 〈cop 3625 Fun wfun 5252 ‘cfv 5258 ℕcn 8990 ndxcnx 12675 Slot cslot 12677 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-slot 12682 | 
| This theorem is referenced by: strslss 12726 | 
| Copyright terms: Public domain | W3C validator |