![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslssd | GIF version |
Description: Deduction version of strslss 11849. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.) |
Ref | Expression |
---|---|
strslssd.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strssd.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
strssd.f | ⊢ (𝜑 → Fun 𝑇) |
strssd.s | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
strssd.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
Ref | Expression |
---|---|
strslssd | ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslssd.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | strssd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
3 | strssd.f | . . 3 ⊢ (𝜑 → Fun 𝑇) | |
4 | strssd.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
5 | strssd.n | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
6 | 4, 5 | sseldd 3064 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑇) |
7 | 1, 2, 3, 6 | strslfvd 11843 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑇)) |
8 | 2, 4 | ssexd 4028 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
9 | funss 5100 | . . . 4 ⊢ (𝑆 ⊆ 𝑇 → (Fun 𝑇 → Fun 𝑆)) | |
10 | 4, 3, 9 | sylc 62 | . . 3 ⊢ (𝜑 → Fun 𝑆) |
11 | 1, 8, 10, 5 | strslfvd 11843 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
12 | 7, 11 | eqtr3d 2149 | 1 ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 Vcvv 2657 ⊆ wss 3037 〈cop 3496 Fun wfun 5075 ‘cfv 5081 ℕcn 8630 ndxcnx 11799 Slot cslot 11801 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-sbc 2879 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-iota 5046 df-fun 5083 df-fv 5089 df-slot 11806 |
This theorem is referenced by: strslss 11849 |
Copyright terms: Public domain | W3C validator |