ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslssd GIF version

Theorem strslssd 12994
Description: Deduction version of strslss 12995. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypotheses
Ref Expression
strslssd.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strssd.t (𝜑𝑇𝑉)
strssd.f (𝜑 → Fun 𝑇)
strssd.s (𝜑𝑆𝑇)
strssd.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
Assertion
Ref Expression
strslssd (𝜑 → (𝐸𝑇) = (𝐸𝑆))

Proof of Theorem strslssd
StepHypRef Expression
1 strslssd.e . . 3 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
2 strssd.t . . 3 (𝜑𝑇𝑉)
3 strssd.f . . 3 (𝜑 → Fun 𝑇)
4 strssd.s . . . 4 (𝜑𝑆𝑇)
5 strssd.n . . . 4 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
64, 5sseldd 3202 . . 3 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑇)
71, 2, 3, 6strslfvd 12989 . 2 (𝜑𝐶 = (𝐸𝑇))
82, 4ssexd 4200 . . 3 (𝜑𝑆 ∈ V)
9 funss 5309 . . . 4 (𝑆𝑇 → (Fun 𝑇 → Fun 𝑆))
104, 3, 9sylc 62 . . 3 (𝜑 → Fun 𝑆)
111, 8, 10, 5strslfvd 12989 . 2 (𝜑𝐶 = (𝐸𝑆))
127, 11eqtr3d 2242 1 (𝜑 → (𝐸𝑇) = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  Vcvv 2776  wss 3174  cop 3646  Fun wfun 5284  cfv 5290  cn 9071  ndxcnx 12944  Slot cslot 12946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fv 5298  df-slot 12951
This theorem is referenced by:  strslss  12995
  Copyright terms: Public domain W3C validator