![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslssd | GIF version |
Description: Deduction version of strslss 12524. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.) |
Ref | Expression |
---|---|
strslssd.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strssd.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
strssd.f | ⊢ (𝜑 → Fun 𝑇) |
strssd.s | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
strssd.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
Ref | Expression |
---|---|
strslssd | ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslssd.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | strssd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
3 | strssd.f | . . 3 ⊢ (𝜑 → Fun 𝑇) | |
4 | strssd.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
5 | strssd.n | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
6 | 4, 5 | sseldd 3168 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑇) |
7 | 1, 2, 3, 6 | strslfvd 12518 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑇)) |
8 | 2, 4 | ssexd 4155 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
9 | funss 5247 | . . . 4 ⊢ (𝑆 ⊆ 𝑇 → (Fun 𝑇 → Fun 𝑆)) | |
10 | 4, 3, 9 | sylc 62 | . . 3 ⊢ (𝜑 → Fun 𝑆) |
11 | 1, 8, 10, 5 | strslfvd 12518 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
12 | 7, 11 | eqtr3d 2222 | 1 ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 Vcvv 2749 ⊆ wss 3141 〈cop 3607 Fun wfun 5222 ‘cfv 5228 ℕcn 8933 ndxcnx 12473 Slot cslot 12475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-iota 5190 df-fun 5230 df-fv 5236 df-slot 12480 |
This theorem is referenced by: strslss 12524 |
Copyright terms: Public domain | W3C validator |