![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslssd | GIF version |
Description: Deduction version of strslss 12513. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.) |
Ref | Expression |
---|---|
strslssd.e | β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) |
strssd.t | β’ (π β π β π) |
strssd.f | β’ (π β Fun π) |
strssd.s | β’ (π β π β π) |
strssd.n | β’ (π β β¨(πΈβndx), πΆβ© β π) |
Ref | Expression |
---|---|
strslssd | β’ (π β (πΈβπ) = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslssd.e | . . 3 β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) | |
2 | strssd.t | . . 3 β’ (π β π β π) | |
3 | strssd.f | . . 3 β’ (π β Fun π) | |
4 | strssd.s | . . . 4 β’ (π β π β π) | |
5 | strssd.n | . . . 4 β’ (π β β¨(πΈβndx), πΆβ© β π) | |
6 | 4, 5 | sseldd 3158 | . . 3 β’ (π β β¨(πΈβndx), πΆβ© β π) |
7 | 1, 2, 3, 6 | strslfvd 12507 | . 2 β’ (π β πΆ = (πΈβπ)) |
8 | 2, 4 | ssexd 4145 | . . 3 β’ (π β π β V) |
9 | funss 5237 | . . . 4 β’ (π β π β (Fun π β Fun π)) | |
10 | 4, 3, 9 | sylc 62 | . . 3 β’ (π β Fun π) |
11 | 1, 8, 10, 5 | strslfvd 12507 | . 2 β’ (π β πΆ = (πΈβπ)) |
12 | 7, 11 | eqtr3d 2212 | 1 β’ (π β (πΈβπ) = (πΈβπ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 Vcvv 2739 β wss 3131 β¨cop 3597 Fun wfun 5212 βcfv 5218 βcn 8922 ndxcnx 12462 Slot cslot 12464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fv 5226 df-slot 12469 |
This theorem is referenced by: strslss 12513 |
Copyright terms: Public domain | W3C validator |