![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslssd | GIF version |
Description: Deduction version of strslss 12666. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.) |
Ref | Expression |
---|---|
strslssd.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strssd.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
strssd.f | ⊢ (𝜑 → Fun 𝑇) |
strssd.s | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
strssd.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
Ref | Expression |
---|---|
strslssd | ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslssd.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | strssd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
3 | strssd.f | . . 3 ⊢ (𝜑 → Fun 𝑇) | |
4 | strssd.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
5 | strssd.n | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
6 | 4, 5 | sseldd 3180 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑇) |
7 | 1, 2, 3, 6 | strslfvd 12660 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑇)) |
8 | 2, 4 | ssexd 4169 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
9 | funss 5273 | . . . 4 ⊢ (𝑆 ⊆ 𝑇 → (Fun 𝑇 → Fun 𝑆)) | |
10 | 4, 3, 9 | sylc 62 | . . 3 ⊢ (𝜑 → Fun 𝑆) |
11 | 1, 8, 10, 5 | strslfvd 12660 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
12 | 7, 11 | eqtr3d 2228 | 1 ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 〈cop 3621 Fun wfun 5248 ‘cfv 5254 ℕcn 8982 ndxcnx 12615 Slot cslot 12617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fv 5262 df-slot 12622 |
This theorem is referenced by: strslss 12666 |
Copyright terms: Public domain | W3C validator |