ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrex Unicode version

Theorem tfrex 6423
Description: The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
tfrex.1  |-  F  = recs ( G )
tfrex.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfrex  |-  ( (
ph  /\  A  e.  V )  ->  ( F `  A )  e.  _V )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    A( x)    F( x)    V( x)

Proof of Theorem tfrex
Dummy variables  f  g  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrex.1 . . 3  |-  F  = recs ( G )
21fveq1i 5556 . 2  |-  ( F `
 A )  =  (recs ( G ) `
 A )
3 eqid 2193 . . . 4  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }
43tfrlem3 6366 . . 3  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
5 tfrex.2 . . 3  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
64, 5tfrexlem 6389 . 2  |-  ( (
ph  /\  A  e.  V )  ->  (recs ( G ) `  A
)  e.  _V )
72, 6eqeltrid 2280 1  |-  ( (
ph  /\  A  e.  V )  ->  ( F `  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760   Oncon0 4395    |` cres 4662   Fun wfun 5249    Fn wfn 5250   ` cfv 5255  recscrecs 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6360
This theorem is referenced by:  rdgexggg  6432
  Copyright terms: Public domain W3C validator