![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > toponcom | GIF version |
Description: If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
toponcom | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 14183 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘∪ 𝐽) → ∪ 𝐽 = ∪ 𝐾) | |
2 | 1 | eqcomd 2199 | . . 3 ⊢ (𝐾 ∈ (TopOn‘∪ 𝐽) → ∪ 𝐾 = ∪ 𝐽) |
3 | 2 | anim2i 342 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → (𝐽 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐽)) |
4 | istopon 14181 | . 2 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ (𝐽 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐽)) | |
5 | 3, 4 | sylibr 134 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∪ cuni 3835 ‘cfv 5254 Topctop 14165 TopOnctopon 14178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-topon 14179 |
This theorem is referenced by: toponcomb 14196 |
Copyright terms: Public domain | W3C validator |