ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponuni Unicode version

Theorem toponuni 12807
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
toponuni  |-  ( J  e.  (TopOn `  B
)  ->  B  =  U. J )

Proof of Theorem toponuni
StepHypRef Expression
1 istopon 12805 . 2  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )
21simprbi 273 1  |-  ( J  e.  (TopOn `  B
)  ->  B  =  U. J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   U.cuni 3796   ` cfv 5198   Topctop 12789  TopOnctopon 12802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-topon 12803
This theorem is referenced by:  toponunii  12809  toponmax  12817  toponss  12818  toponcom  12819  topgele  12821  topontopn  12829  restuni  12966  resttopon2  12972  lmfval  12986  cnfval  12988  cnpfval  12989  cnprcl2k  13000  ssidcn  13004  iscnp4  13012  cnntr  13019  cncnp  13024  cnptopresti  13032  txtopon  13056  txuni  13057  cnmpt1t  13079  cnmpt2t  13087  cnmpt1res  13090  cnmpt2res  13091  mopnuni  13239  isxms2  13246  limccnp2lem  13439  limccnp2cntop  13440  dvfvalap  13444  dvbss  13448  dvfgg  13451  dvcnp2cntop  13457  dvaddxxbr  13459  dvmulxxbr  13460
  Copyright terms: Public domain W3C validator