ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponss Unicode version

Theorem toponss 14613
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
toponss  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  J )  ->  A  C_  X )

Proof of Theorem toponss
StepHypRef Expression
1 elssuni 3892 . . 3  |-  ( A  e.  J  ->  A  C_ 
U. J )
21adantl 277 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  J )  ->  A  C_ 
U. J )
3 toponuni 14602 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
43adantr 276 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  J )  ->  X  =  U. J )
52, 4sseqtrrd 3240 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  J )  ->  A  C_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174   U.cuni 3864   ` cfv 5290  TopOnctopon 14597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-topon 14598
This theorem is referenced by:  iscnp3  14790  cnntr  14812  cncnp  14817  tx1cn  14856  tx2cn  14857  txcnp  14858  mopnss  15037  xmettx  15097  dvmptfsum  15312
  Copyright terms: Public domain W3C validator