ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpnei Unicode version

Theorem tpnei 12602
Description: The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 12600. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
tpnei.1  |-  X  = 
U. J
Assertion
Ref Expression
tpnei  |-  ( J  e.  Top  ->  ( S  C_  X  <->  X  e.  ( ( nei `  J
) `  S )
) )

Proof of Theorem tpnei
StepHypRef Expression
1 tpnei.1 . . . 4  |-  X  = 
U. J
21topopn 12448 . . 3  |-  ( J  e.  Top  ->  X  e.  J )
3 opnneiss 12600 . . . 4  |-  ( ( J  e.  Top  /\  X  e.  J  /\  S  C_  X )  ->  X  e.  ( ( nei `  J ) `  S ) )
433exp 1184 . . 3  |-  ( J  e.  Top  ->  ( X  e.  J  ->  ( S  C_  X  ->  X  e.  ( ( nei `  J ) `  S
) ) ) )
52, 4mpd 13 . 2  |-  ( J  e.  Top  ->  ( S  C_  X  ->  X  e.  ( ( nei `  J
) `  S )
) )
6 ssnei 12593 . . 3  |-  ( ( J  e.  Top  /\  X  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
76ex 114 . 2  |-  ( J  e.  Top  ->  ( X  e.  ( ( nei `  J ) `  S )  ->  S  C_  X ) )
85, 7impbid 128 1  |-  ( J  e.  Top  ->  ( S  C_  X  <->  X  e.  ( ( nei `  J
) `  S )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1335    e. wcel 2128    C_ wss 3102   U.cuni 3773   ` cfv 5171   Topctop 12437   neicnei 12580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-top 12438  df-nei 12581
This theorem is referenced by:  neiuni  12603
  Copyright terms: Public domain W3C validator