ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpnei Unicode version

Theorem tpnei 14328
Description: The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 14326. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
tpnei.1  |-  X  = 
U. J
Assertion
Ref Expression
tpnei  |-  ( J  e.  Top  ->  ( S  C_  X  <->  X  e.  ( ( nei `  J
) `  S )
) )

Proof of Theorem tpnei
StepHypRef Expression
1 tpnei.1 . . . 4  |-  X  = 
U. J
21topopn 14176 . . 3  |-  ( J  e.  Top  ->  X  e.  J )
3 opnneiss 14326 . . . 4  |-  ( ( J  e.  Top  /\  X  e.  J  /\  S  C_  X )  ->  X  e.  ( ( nei `  J ) `  S ) )
433exp 1204 . . 3  |-  ( J  e.  Top  ->  ( X  e.  J  ->  ( S  C_  X  ->  X  e.  ( ( nei `  J ) `  S
) ) ) )
52, 4mpd 13 . 2  |-  ( J  e.  Top  ->  ( S  C_  X  ->  X  e.  ( ( nei `  J
) `  S )
) )
6 ssnei 14319 . . 3  |-  ( ( J  e.  Top  /\  X  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
76ex 115 . 2  |-  ( J  e.  Top  ->  ( X  e.  ( ( nei `  J ) `  S )  ->  S  C_  X ) )
85, 7impbid 129 1  |-  ( J  e.  Top  ->  ( S  C_  X  <->  X  e.  ( ( nei `  J
) `  S )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164    C_ wss 3153   U.cuni 3835   ` cfv 5254   Topctop 14165   neicnei 14306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-top 14166  df-nei 14307
This theorem is referenced by:  neiuni  14329
  Copyright terms: Public domain W3C validator