ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiuni Unicode version

Theorem neiuni 14829
Description: The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
tpnei.1  |-  X  = 
U. J
Assertion
Ref Expression
neiuni  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  =  U. (
( nei `  J
) `  S )
)

Proof of Theorem neiuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tpnei.1 . . . . 5  |-  X  = 
U. J
21tpnei 14828 . . . 4  |-  ( J  e.  Top  ->  ( S  C_  X  <->  X  e.  ( ( nei `  J
) `  S )
) )
32biimpa 296 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  e.  ( ( nei `  J ) `  S ) )
4 elssuni 3915 . . 3  |-  ( X  e.  ( ( nei `  J ) `  S
)  ->  X  C_  U. (
( nei `  J
) `  S )
)
53, 4syl 14 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  C_  U. ( ( nei `  J ) `
 S ) )
61neii1 14815 . . . . . 6  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S ) )  ->  x  C_  X )
76ex 115 . . . . 5  |-  ( J  e.  Top  ->  (
x  e.  ( ( nei `  J ) `
 S )  ->  x  C_  X ) )
87adantr 276 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  ( ( nei `  J
) `  S )  ->  x  C_  X )
)
98ralrimiv 2602 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  A. x  e.  (
( nei `  J
) `  S )
x  C_  X )
10 unissb 3917 . . 3  |-  ( U. ( ( nei `  J
) `  S )  C_  X  <->  A. x  e.  ( ( nei `  J
) `  S )
x  C_  X )
119, 10sylibr 134 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  U. ( ( nei `  J
) `  S )  C_  X )
125, 11eqssd 3241 1  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  =  U. (
( nei `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   U.cuni 3887   ` cfv 5317   Topctop 14665   neicnei 14806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-top 14666  df-nei 14807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator