ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntropn Unicode version

Theorem ntropn 14560
Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntropn  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  e.  J )

Proof of Theorem ntropn
StepHypRef Expression
1 clscld.1 . . 3  |-  X  = 
U. J
21ntrval 14553 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
3 inss1 3392 . . . 4  |-  ( J  i^i  ~P S ) 
C_  J
4 uniopn 14444 . . . 4  |-  ( ( J  e.  Top  /\  ( J  i^i  ~P S
)  C_  J )  ->  U. ( J  i^i  ~P S )  e.  J
)
53, 4mpan2 425 . . 3  |-  ( J  e.  Top  ->  U. ( J  i^i  ~P S )  e.  J )
65adantr 276 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  U. ( J  i^i  ~P S )  e.  J
)
72, 6eqeltrd 2281 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175    i^i cin 3164    C_ wss 3165   ~Pcpw 3615   U.cuni 3849   ` cfv 5270   Topctop 14440   intcnt 14536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-top 14441  df-ntr 14539
This theorem is referenced by:  ntrss3  14566  ntrin  14567  isopn3  14568  ntridm  14569  neiint  14588  topssnei  14605  iscnp4  14661  cnntri  14667  cnptoprest  14682  dvfvalap  15124  dvfgg  15131
  Copyright terms: Public domain W3C validator