| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1stg | Unicode version | ||
| Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op1stg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3808 |
. . . 4
| |
| 2 | 1 | fveq2d 5562 |
. . 3
|
| 3 | id 19 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2211 |
. 2
|
| 5 | opeq2 3809 |
. . . 4
| |
| 6 | 5 | fveq2d 5562 |
. . 3
|
| 7 | 6 | eqeq1d 2205 |
. 2
|
| 8 | vex 2766 |
. . 3
| |
| 9 | vex 2766 |
. . 3
| |
| 10 | 8, 9 | op1st 6204 |
. 2
|
| 11 | 4, 7, 10 | vtocl2g 2828 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-1st 6198 |
| This theorem is referenced by: ot1stg 6210 ot2ndg 6211 1stconst 6279 algrflemg 6288 mpoxopn0yelv 6297 mpoxopoveq 6298 xpmapenlem 6910 1stinl 7140 1stinr 7142 mulpipq 7439 suplocexprlemlub 7791 aprcl 8673 frecuzrdgg 10508 qredeu 12265 qnumdenbi 12360 upxp 14508 uptx 14510 txmetcnp 14754 |
| Copyright terms: Public domain | W3C validator |