Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > op1stg | Unicode version |
Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op1stg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3741 | . . . 4 | |
2 | 1 | fveq2d 5471 | . . 3 |
3 | id 19 | . . 3 | |
4 | 2, 3 | eqeq12d 2172 | . 2 |
5 | opeq2 3742 | . . . 4 | |
6 | 5 | fveq2d 5471 | . . 3 |
7 | 6 | eqeq1d 2166 | . 2 |
8 | vex 2715 | . . 3 | |
9 | vex 2715 | . . 3 | |
10 | 8, 9 | op1st 6091 | . 2 |
11 | 4, 7, 10 | vtocl2g 2776 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 cop 3563 cfv 5169 c1st 6083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-iota 5134 df-fun 5171 df-fv 5177 df-1st 6085 |
This theorem is referenced by: ot1stg 6097 ot2ndg 6098 1stconst 6165 algrflemg 6174 mpoxopn0yelv 6183 mpoxopoveq 6184 xpmapenlem 6791 1stinl 7012 1stinr 7014 mulpipq 7286 suplocexprlemlub 7638 aprcl 8515 frecuzrdgg 10308 qredeu 11965 qnumdenbi 12057 upxp 12643 uptx 12645 txmetcnp 12889 |
Copyright terms: Public domain | W3C validator |