ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stg Unicode version

Theorem op1stg 6151
Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
Assertion
Ref Expression
op1stg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 1st `  <. A ,  B >. )  =  A )

Proof of Theorem op1stg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3779 . . . 4  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
21fveq2d 5520 . . 3  |-  ( x  =  A  ->  ( 1st `  <. x ,  y
>. )  =  ( 1st `  <. A ,  y
>. ) )
3 id 19 . . 3  |-  ( x  =  A  ->  x  =  A )
42, 3eqeq12d 2192 . 2  |-  ( x  =  A  ->  (
( 1st `  <. x ,  y >. )  =  x  <->  ( 1st `  <. A ,  y >. )  =  A ) )
5 opeq2 3780 . . . 4  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
65fveq2d 5520 . . 3  |-  ( y  =  B  ->  ( 1st `  <. A ,  y
>. )  =  ( 1st `  <. A ,  B >. ) )
76eqeq1d 2186 . 2  |-  ( y  =  B  ->  (
( 1st `  <. A ,  y >. )  =  A  <->  ( 1st `  <. A ,  B >. )  =  A ) )
8 vex 2741 . . 3  |-  x  e. 
_V
9 vex 2741 . . 3  |-  y  e. 
_V
108, 9op1st 6147 . 2  |-  ( 1st `  <. x ,  y
>. )  =  x
114, 7, 10vtocl2g 2802 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 1st `  <. A ,  B >. )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   <.cop 3596   ` cfv 5217   1stc1st 6139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fv 5225  df-1st 6141
This theorem is referenced by:  ot1stg  6153  ot2ndg  6154  1stconst  6222  algrflemg  6231  mpoxopn0yelv  6240  mpoxopoveq  6241  xpmapenlem  6849  1stinl  7073  1stinr  7075  mulpipq  7371  suplocexprlemlub  7723  aprcl  8603  frecuzrdgg  10416  qredeu  12097  qnumdenbi  12192  upxp  13775  uptx  13777  txmetcnp  14021
  Copyright terms: Public domain W3C validator