| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1stg | Unicode version | ||
| Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op1stg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3833 |
. . . 4
| |
| 2 | 1 | fveq2d 5603 |
. . 3
|
| 3 | id 19 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2222 |
. 2
|
| 5 | opeq2 3834 |
. . . 4
| |
| 6 | 5 | fveq2d 5603 |
. . 3
|
| 7 | 6 | eqeq1d 2216 |
. 2
|
| 8 | vex 2779 |
. . 3
| |
| 9 | vex 2779 |
. . 3
| |
| 10 | 8, 9 | op1st 6255 |
. 2
|
| 11 | 4, 7, 10 | vtocl2g 2842 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fv 5298 df-1st 6249 |
| This theorem is referenced by: ot1stg 6261 ot2ndg 6262 1stconst 6330 algrflemg 6339 mpoxopn0yelv 6348 mpoxopoveq 6349 xpmapenlem 6971 1stinl 7202 1stinr 7204 mulpipq 7520 suplocexprlemlub 7872 aprcl 8754 frecuzrdgg 10598 swrdval 11139 qredeu 12534 qnumdenbi 12629 upxp 14859 uptx 14861 txmetcnp 15105 opvtxfv 15736 |
| Copyright terms: Public domain | W3C validator |