| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsng | Unicode version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) |
| Ref | Expression |
|---|---|
| fvsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3819 |
. . . . 5
| |
| 2 | 1 | sneqd 3646 |
. . . 4
|
| 3 | id 19 |
. . . 4
| |
| 4 | 2, 3 | fveq12d 5583 |
. . 3
|
| 5 | 4 | eqeq1d 2214 |
. 2
|
| 6 | opeq2 3820 |
. . . . 5
| |
| 7 | 6 | sneqd 3646 |
. . . 4
|
| 8 | 7 | fveq1d 5578 |
. . 3
|
| 9 | id 19 |
. . 3
| |
| 10 | 8, 9 | eqeq12d 2220 |
. 2
|
| 11 | vex 2775 |
. . 3
| |
| 12 | vex 2775 |
. . 3
| |
| 13 | 11, 12 | fvsn 5779 |
. 2
|
| 14 | 5, 10, 13 | vtocl2g 2837 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 |
| This theorem is referenced by: fsnunfv 5785 fvpr1g 5790 fvpr2g 5791 tfr0dm 6408 fseq1p1m1 10216 1fv 10261 s1fv 11080 sumsnf 11720 prodsnf 11903 setsslid 12883 mgm1 13202 sgrp1 13243 mnd1 13287 mnd1id 13288 grp1 13438 ring1 13821 ixpsnbasval 14228 |
| Copyright terms: Public domain | W3C validator |