| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsng | Unicode version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) |
| Ref | Expression |
|---|---|
| fvsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3833 |
. . . . 5
| |
| 2 | 1 | sneqd 3656 |
. . . 4
|
| 3 | id 19 |
. . . 4
| |
| 4 | 2, 3 | fveq12d 5606 |
. . 3
|
| 5 | 4 | eqeq1d 2216 |
. 2
|
| 6 | opeq2 3834 |
. . . . 5
| |
| 7 | 6 | sneqd 3656 |
. . . 4
|
| 8 | 7 | fveq1d 5601 |
. . 3
|
| 9 | id 19 |
. . 3
| |
| 10 | 8, 9 | eqeq12d 2222 |
. 2
|
| 11 | vex 2779 |
. . 3
| |
| 12 | vex 2779 |
. . 3
| |
| 13 | 11, 12 | fvsn 5802 |
. 2
|
| 14 | 5, 10, 13 | vtocl2g 2842 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 |
| This theorem is referenced by: fsnunfv 5808 fvpr1g 5813 fvpr2g 5814 tfr0dm 6431 fseq1p1m1 10251 1fv 10296 s1fv 11118 sumsnf 11835 prodsnf 12018 setsslid 12998 mgm1 13317 sgrp1 13358 mnd1 13402 mnd1id 13403 grp1 13553 ring1 13936 ixpsnbasval 14343 |
| Copyright terms: Public domain | W3C validator |