| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2ndg | Unicode version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3828 |
. . . 4
| |
| 2 | 1 | fveq2d 5598 |
. . 3
|
| 3 | 2 | eqeq1d 2215 |
. 2
|
| 4 | opeq2 3829 |
. . . 4
| |
| 5 | 4 | fveq2d 5598 |
. . 3
|
| 6 | id 19 |
. . 3
| |
| 7 | 5, 6 | eqeq12d 2221 |
. 2
|
| 8 | vex 2776 |
. . 3
| |
| 9 | vex 2776 |
. . 3
| |
| 10 | 8, 9 | op2nd 6251 |
. 2
|
| 11 | 3, 7, 10 | vtocl2g 2839 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-iota 5246 df-fun 5287 df-fv 5293 df-2nd 6245 |
| This theorem is referenced by: ot2ndg 6257 ot3rdgg 6258 2ndconst 6326 xpmapenlem 6966 2ndinl 7198 2ndinr 7200 mulpipq 7515 suplocexprlem2b 7857 aprcl 8749 frec2uzrdg 10586 frecuzrdgsuc 10591 swrdval 11134 eucalglt 12464 eucalg 12466 qredeu 12504 sqpweven 12582 2sqpwodd 12583 qnumdenbi 12599 upxp 14829 uptx 14831 txmetcnp 15075 opiedgfv 15709 |
| Copyright terms: Public domain | W3C validator |