| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2ndg | Unicode version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3819 |
. . . 4
| |
| 2 | 1 | fveq2d 5580 |
. . 3
|
| 3 | 2 | eqeq1d 2214 |
. 2
|
| 4 | opeq2 3820 |
. . . 4
| |
| 5 | 4 | fveq2d 5580 |
. . 3
|
| 6 | id 19 |
. . 3
| |
| 7 | 5, 6 | eqeq12d 2220 |
. 2
|
| 8 | vex 2775 |
. . 3
| |
| 9 | vex 2775 |
. . 3
| |
| 10 | 8, 9 | op2nd 6233 |
. 2
|
| 11 | 3, 7, 10 | vtocl2g 2837 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fv 5279 df-2nd 6227 |
| This theorem is referenced by: ot2ndg 6239 ot3rdgg 6240 2ndconst 6308 xpmapenlem 6946 2ndinl 7177 2ndinr 7179 mulpipq 7485 suplocexprlem2b 7827 aprcl 8719 frec2uzrdg 10554 frecuzrdgsuc 10559 swrdval 11101 eucalglt 12379 eucalg 12381 qredeu 12419 sqpweven 12497 2sqpwodd 12498 qnumdenbi 12514 upxp 14744 uptx 14746 txmetcnp 14990 opiedgfv 15622 |
| Copyright terms: Public domain | W3C validator |