ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndg Unicode version

Theorem op2ndg 6255
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
Assertion
Ref Expression
op2ndg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )

Proof of Theorem op2ndg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3828 . . . 4  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
21fveq2d 5598 . . 3  |-  ( x  =  A  ->  ( 2nd `  <. x ,  y
>. )  =  ( 2nd `  <. A ,  y
>. ) )
32eqeq1d 2215 . 2  |-  ( x  =  A  ->  (
( 2nd `  <. x ,  y >. )  =  y  <->  ( 2nd `  <. A ,  y >. )  =  y ) )
4 opeq2 3829 . . . 4  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
54fveq2d 5598 . . 3  |-  ( y  =  B  ->  ( 2nd `  <. A ,  y
>. )  =  ( 2nd `  <. A ,  B >. ) )
6 id 19 . . 3  |-  ( y  =  B  ->  y  =  B )
75, 6eqeq12d 2221 . 2  |-  ( y  =  B  ->  (
( 2nd `  <. A ,  y >. )  =  y  <->  ( 2nd `  <. A ,  B >. )  =  B ) )
8 vex 2776 . . 3  |-  x  e. 
_V
9 vex 2776 . . 3  |-  y  e. 
_V
108, 9op2nd 6251 . 2  |-  ( 2nd `  <. x ,  y
>. )  =  y
113, 7, 10vtocl2g 2839 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   <.cop 3641   ` cfv 5285   2ndc2nd 6243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-iota 5246  df-fun 5287  df-fv 5293  df-2nd 6245
This theorem is referenced by:  ot2ndg  6257  ot3rdgg  6258  2ndconst  6326  xpmapenlem  6966  2ndinl  7198  2ndinr  7200  mulpipq  7515  suplocexprlem2b  7857  aprcl  8749  frec2uzrdg  10586  frecuzrdgsuc  10591  swrdval  11134  eucalglt  12464  eucalg  12466  qredeu  12504  sqpweven  12582  2sqpwodd  12583  qnumdenbi  12599  upxp  14829  uptx  14831  txmetcnp  15075  opiedgfv  15709
  Copyright terms: Public domain W3C validator