Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > op2ndg | Unicode version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op2ndg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3737 | . . . 4 | |
2 | 1 | fveq2d 5465 | . . 3 |
3 | 2 | eqeq1d 2163 | . 2 |
4 | opeq2 3738 | . . . 4 | |
5 | 4 | fveq2d 5465 | . . 3 |
6 | id 19 | . . 3 | |
7 | 5, 6 | eqeq12d 2169 | . 2 |
8 | vex 2712 | . . 3 | |
9 | vex 2712 | . . 3 | |
10 | 8, 9 | op2nd 6085 | . 2 |
11 | 3, 7, 10 | vtocl2g 2773 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wcel 2125 cop 3559 cfv 5163 c2nd 6077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-iota 5128 df-fun 5165 df-fv 5171 df-2nd 6079 |
This theorem is referenced by: ot2ndg 6091 ot3rdgg 6092 2ndconst 6159 xpmapenlem 6783 2ndinl 7005 2ndinr 7007 mulpipq 7271 suplocexprlem2b 7613 aprcl 8500 frec2uzrdg 10286 frecuzrdgsuc 10291 eucalglt 11905 eucalg 11907 qredeu 11945 sqpweven 12020 2sqpwodd 12021 qnumdenbi 12037 upxp 12611 uptx 12613 txmetcnp 12857 |
Copyright terms: Public domain | W3C validator |