ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndg Unicode version

Theorem op2ndg 5938
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
Assertion
Ref Expression
op2ndg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )

Proof of Theorem op2ndg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3630 . . . 4  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
21fveq2d 5324 . . 3  |-  ( x  =  A  ->  ( 2nd `  <. x ,  y
>. )  =  ( 2nd `  <. A ,  y
>. ) )
32eqeq1d 2097 . 2  |-  ( x  =  A  ->  (
( 2nd `  <. x ,  y >. )  =  y  <->  ( 2nd `  <. A ,  y >. )  =  y ) )
4 opeq2 3631 . . . 4  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
54fveq2d 5324 . . 3  |-  ( y  =  B  ->  ( 2nd `  <. A ,  y
>. )  =  ( 2nd `  <. A ,  B >. ) )
6 id 19 . . 3  |-  ( y  =  B  ->  y  =  B )
75, 6eqeq12d 2103 . 2  |-  ( y  =  B  ->  (
( 2nd `  <. A ,  y >. )  =  y  <->  ( 2nd `  <. A ,  B >. )  =  B ) )
8 vex 2625 . . 3  |-  x  e. 
_V
9 vex 2625 . . 3  |-  y  e. 
_V
108, 9op2nd 5934 . 2  |-  ( 2nd `  <. x ,  y
>. )  =  y
113, 7, 10vtocl2g 2686 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439   <.cop 3455   ` cfv 5030   2ndc2nd 5926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-sbc 2844  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-iota 4995  df-fun 5032  df-fv 5038  df-2nd 5928
This theorem is referenced by:  ot2ndg  5940  ot3rdgg  5941  2ndconst  6003  xpmapenlem  6621  2ndinl  6822  2ndinr  6824  mulpipq  6994  frec2uzrdg  9879  frecuzrdgsuc  9884  eucalglt  11380  eucalg  11382  qredeu  11420  sqpweven  11494  2sqpwodd  11495  qnumdenbi  11511
  Copyright terms: Public domain W3C validator