ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndg Unicode version

Theorem op2ndg 6295
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
Assertion
Ref Expression
op2ndg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )

Proof of Theorem op2ndg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3856 . . . 4  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
21fveq2d 5630 . . 3  |-  ( x  =  A  ->  ( 2nd `  <. x ,  y
>. )  =  ( 2nd `  <. A ,  y
>. ) )
32eqeq1d 2238 . 2  |-  ( x  =  A  ->  (
( 2nd `  <. x ,  y >. )  =  y  <->  ( 2nd `  <. A ,  y >. )  =  y ) )
4 opeq2 3857 . . . 4  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
54fveq2d 5630 . . 3  |-  ( y  =  B  ->  ( 2nd `  <. A ,  y
>. )  =  ( 2nd `  <. A ,  B >. ) )
6 id 19 . . 3  |-  ( y  =  B  ->  y  =  B )
75, 6eqeq12d 2244 . 2  |-  ( y  =  B  ->  (
( 2nd `  <. A ,  y >. )  =  y  <->  ( 2nd `  <. A ,  B >. )  =  B ) )
8 vex 2802 . . 3  |-  x  e. 
_V
9 vex 2802 . . 3  |-  y  e. 
_V
108, 9op2nd 6291 . 2  |-  ( 2nd `  <. x ,  y
>. )  =  y
113, 7, 10vtocl2g 2865 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   <.cop 3669   ` cfv 5317   2ndc2nd 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fv 5325  df-2nd 6285
This theorem is referenced by:  ot2ndg  6297  ot3rdgg  6298  2ndconst  6366  xpmapenlem  7006  2ndinl  7238  2ndinr  7240  mulpipq  7555  suplocexprlem2b  7897  aprcl  8789  frec2uzrdg  10626  frecuzrdgsuc  10631  swrdval  11175  eucalglt  12574  eucalg  12576  qredeu  12614  sqpweven  12692  2sqpwodd  12693  qnumdenbi  12709  upxp  14940  uptx  14942  txmetcnp  15186  opiedgfv  15820
  Copyright terms: Public domain W3C validator