| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2ndg | Unicode version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3818 |
. . . 4
| |
| 2 | 1 | fveq2d 5579 |
. . 3
|
| 3 | 2 | eqeq1d 2213 |
. 2
|
| 4 | opeq2 3819 |
. . . 4
| |
| 5 | 4 | fveq2d 5579 |
. . 3
|
| 6 | id 19 |
. . 3
| |
| 7 | 5, 6 | eqeq12d 2219 |
. 2
|
| 8 | vex 2774 |
. . 3
| |
| 9 | vex 2774 |
. . 3
| |
| 10 | 8, 9 | op2nd 6232 |
. 2
|
| 11 | 3, 7, 10 | vtocl2g 2836 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fv 5278 df-2nd 6226 |
| This theorem is referenced by: ot2ndg 6238 ot3rdgg 6239 2ndconst 6307 xpmapenlem 6945 2ndinl 7176 2ndinr 7178 mulpipq 7484 suplocexprlem2b 7826 aprcl 8718 frec2uzrdg 10552 frecuzrdgsuc 10557 eucalglt 12350 eucalg 12352 qredeu 12390 sqpweven 12468 2sqpwodd 12469 qnumdenbi 12485 upxp 14715 uptx 14717 txmetcnp 14961 opiedgfv 15593 |
| Copyright terms: Public domain | W3C validator |