| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2ndg | Unicode version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3809 |
. . . 4
| |
| 2 | 1 | fveq2d 5565 |
. . 3
|
| 3 | 2 | eqeq1d 2205 |
. 2
|
| 4 | opeq2 3810 |
. . . 4
| |
| 5 | 4 | fveq2d 5565 |
. . 3
|
| 6 | id 19 |
. . 3
| |
| 7 | 5, 6 | eqeq12d 2211 |
. 2
|
| 8 | vex 2766 |
. . 3
| |
| 9 | vex 2766 |
. . 3
| |
| 10 | 8, 9 | op2nd 6214 |
. 2
|
| 11 | 3, 7, 10 | vtocl2g 2828 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fv 5267 df-2nd 6208 |
| This theorem is referenced by: ot2ndg 6220 ot3rdgg 6221 2ndconst 6289 xpmapenlem 6919 2ndinl 7150 2ndinr 7152 mulpipq 7456 suplocexprlem2b 7798 aprcl 8690 frec2uzrdg 10518 frecuzrdgsuc 10523 eucalglt 12250 eucalg 12252 qredeu 12290 sqpweven 12368 2sqpwodd 12369 qnumdenbi 12385 upxp 14592 uptx 14594 txmetcnp 14838 |
| Copyright terms: Public domain | W3C validator |