ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomeng Unicode version

Theorem xpcomeng 6884
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
Assertion
Ref Expression
xpcomeng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  ~~  ( B  X.  A ) )

Proof of Theorem xpcomeng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4674 . . 3  |-  ( x  =  A  ->  (
x  X.  y )  =  ( A  X.  y ) )
2 xpeq2 4675 . . 3  |-  ( x  =  A  ->  (
y  X.  x )  =  ( y  X.  A ) )
31, 2breq12d 4043 . 2  |-  ( x  =  A  ->  (
( x  X.  y
)  ~~  ( y  X.  x )  <->  ( A  X.  y )  ~~  (
y  X.  A ) ) )
4 xpeq2 4675 . . 3  |-  ( y  =  B  ->  ( A  X.  y )  =  ( A  X.  B
) )
5 xpeq1 4674 . . 3  |-  ( y  =  B  ->  (
y  X.  A )  =  ( B  X.  A ) )
64, 5breq12d 4043 . 2  |-  ( y  =  B  ->  (
( A  X.  y
)  ~~  ( y  X.  A )  <->  ( A  X.  B )  ~~  ( B  X.  A ) ) )
7 vex 2763 . . 3  |-  x  e. 
_V
8 vex 2763 . . 3  |-  y  e. 
_V
97, 8xpcomen 6883 . 2  |-  ( x  X.  y )  ~~  ( y  X.  x
)
103, 6, 9vtocl2g 2825 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  ~~  ( B  X.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   class class class wbr 4030    X. cxp 4658    ~~ cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-en 6797
This theorem is referenced by:  xpsnen2g  6885  xpdom1g  6889  hashxp  10900
  Copyright terms: Public domain W3C validator