ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomeng Unicode version

Theorem xpcomeng 6938
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
Assertion
Ref Expression
xpcomeng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  ~~  ( B  X.  A ) )

Proof of Theorem xpcomeng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4697 . . 3  |-  ( x  =  A  ->  (
x  X.  y )  =  ( A  X.  y ) )
2 xpeq2 4698 . . 3  |-  ( x  =  A  ->  (
y  X.  x )  =  ( y  X.  A ) )
31, 2breq12d 4064 . 2  |-  ( x  =  A  ->  (
( x  X.  y
)  ~~  ( y  X.  x )  <->  ( A  X.  y )  ~~  (
y  X.  A ) ) )
4 xpeq2 4698 . . 3  |-  ( y  =  B  ->  ( A  X.  y )  =  ( A  X.  B
) )
5 xpeq1 4697 . . 3  |-  ( y  =  B  ->  (
y  X.  A )  =  ( B  X.  A ) )
64, 5breq12d 4064 . 2  |-  ( y  =  B  ->  (
( A  X.  y
)  ~~  ( y  X.  A )  <->  ( A  X.  B )  ~~  ( B  X.  A ) ) )
7 vex 2776 . . 3  |-  x  e. 
_V
8 vex 2776 . . 3  |-  y  e. 
_V
97, 8xpcomen 6937 . 2  |-  ( x  X.  y )  ~~  ( y  X.  x
)
103, 6, 9vtocl2g 2839 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  ~~  ( B  X.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   class class class wbr 4051    X. cxp 4681    ~~ cen 6838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1st 6239  df-2nd 6240  df-en 6841
This theorem is referenced by:  xpsnen2g  6939  xpdom1g  6943  hashxp  10993
  Copyright terms: Public domain W3C validator