ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomeng Unicode version

Theorem xpcomeng 6830
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
Assertion
Ref Expression
xpcomeng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  ~~  ( B  X.  A ) )

Proof of Theorem xpcomeng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4642 . . 3  |-  ( x  =  A  ->  (
x  X.  y )  =  ( A  X.  y ) )
2 xpeq2 4643 . . 3  |-  ( x  =  A  ->  (
y  X.  x )  =  ( y  X.  A ) )
31, 2breq12d 4018 . 2  |-  ( x  =  A  ->  (
( x  X.  y
)  ~~  ( y  X.  x )  <->  ( A  X.  y )  ~~  (
y  X.  A ) ) )
4 xpeq2 4643 . . 3  |-  ( y  =  B  ->  ( A  X.  y )  =  ( A  X.  B
) )
5 xpeq1 4642 . . 3  |-  ( y  =  B  ->  (
y  X.  A )  =  ( B  X.  A ) )
64, 5breq12d 4018 . 2  |-  ( y  =  B  ->  (
( A  X.  y
)  ~~  ( y  X.  A )  <->  ( A  X.  B )  ~~  ( B  X.  A ) ) )
7 vex 2742 . . 3  |-  x  e. 
_V
8 vex 2742 . . 3  |-  y  e. 
_V
97, 8xpcomen 6829 . 2  |-  ( x  X.  y )  ~~  ( y  X.  x
)
103, 6, 9vtocl2g 2803 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  ~~  ( B  X.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4005    X. cxp 4626    ~~ cen 6740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-en 6743
This theorem is referenced by:  xpsnen2g  6831  xpdom1g  6835  hashxp  10808
  Copyright terms: Public domain W3C validator