| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zsscn | Unicode version | ||
| Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zsscn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9359 |
. 2
| |
| 2 | 1 | ssriv 3196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 7999 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-neg 8228 df-z 9355 |
| This theorem is referenced by: zex 9363 divfnzn 9724 zexpcl 10680 fsumzcl 11632 fprodzcl 11839 4sqlem11 12643 zringbas 14276 zring0 14280 lmbrf 14605 lmres 14638 lgsfcl2 15401 2sqlem6 15515 |
| Copyright terms: Public domain | W3C validator |