ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsscn Unicode version

Theorem zsscn 9362
Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
zsscn  |-  ZZ  C_  CC

Proof of Theorem zsscn
StepHypRef Expression
1 zcn 9359 . 2  |-  ( x  e.  ZZ  ->  x  e.  CC )
21ssriv 3196 1  |-  ZZ  C_  CC
Colors of variables: wff set class
Syntax hints:    C_ wss 3165   CCcc 7905   ZZcz 9354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-resscn 7999
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5229  df-fv 5276  df-ov 5937  df-neg 8228  df-z 9355
This theorem is referenced by:  zex  9363  divfnzn  9724  zexpcl  10680  fsumzcl  11632  fprodzcl  11839  4sqlem11  12643  zringbas  14276  zring0  14280  lmbrf  14605  lmres  14638  lgsfcl2  15401  2sqlem6  15515
  Copyright terms: Public domain W3C validator