ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsscn Unicode version

Theorem zsscn 9410
Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
zsscn  |-  ZZ  C_  CC

Proof of Theorem zsscn
StepHypRef Expression
1 zcn 9407 . 2  |-  ( x  e.  ZZ  ->  x  e.  CC )
21ssriv 3201 1  |-  ZZ  C_  CC
Colors of variables: wff set class
Syntax hints:    C_ wss 3170   CCcc 7953   ZZcz 9402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8047
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-iota 5246  df-fv 5293  df-ov 5965  df-neg 8276  df-z 9403
This theorem is referenced by:  zex  9411  divfnzn  9772  zexpcl  10731  fsumzcl  11798  fprodzcl  12005  4sqlem11  12809  zringbas  14443  zring0  14447  lmbrf  14772  lmres  14805  lgsfcl2  15568  2sqlem6  15682
  Copyright terms: Public domain W3C validator