| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zex | Unicode version | ||
| Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8051 |
. 2
| |
| 2 | zsscn 9382 |
. 2
| |
| 3 | 1, 2 | ssexi 4183 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-neg 8248 df-z 9375 |
| This theorem is referenced by: dfuzi 9485 uzval 9652 uzf 9653 fzval 10134 fzf 10136 flval 10417 frec2uzrand 10552 frec2uzf1od 10553 frecfzennn 10573 uzennn 10583 hashinfom 10925 climz 11636 serclim0 11649 climaddc1 11673 climmulc2 11675 climsubc1 11676 climsubc2 11677 climle 11678 climlec2 11685 iserabs 11819 isumshft 11834 explecnv 11849 prodfclim1 11888 qnumval 12540 qdenval 12541 odzval 12597 znnen 12802 exmidunben 12830 qnnen 12835 fngsum 13253 igsumvalx 13254 mulgfvalg 13490 mulgex 13492 zringplusg 14392 zringmulr 14394 zringmpg 14401 zrhval2 14414 lmres 14753 climcncf 15089 |
| Copyright terms: Public domain | W3C validator |