| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zex | Unicode version | ||
| Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8049 |
. 2
| |
| 2 | zsscn 9380 |
. 2
| |
| 3 | 1, 2 | ssexi 4182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-neg 8246 df-z 9373 |
| This theorem is referenced by: dfuzi 9483 uzval 9650 uzf 9651 fzval 10132 fzf 10134 flval 10415 frec2uzrand 10550 frec2uzf1od 10551 frecfzennn 10571 uzennn 10581 hashinfom 10923 climz 11603 serclim0 11616 climaddc1 11640 climmulc2 11642 climsubc1 11643 climsubc2 11644 climle 11645 climlec2 11652 iserabs 11786 isumshft 11801 explecnv 11816 prodfclim1 11855 qnumval 12507 qdenval 12508 odzval 12564 znnen 12769 exmidunben 12797 qnnen 12802 fngsum 13220 igsumvalx 13221 mulgfvalg 13457 mulgex 13459 zringplusg 14359 zringmulr 14361 zringmpg 14368 zrhval2 14381 lmres 14720 climcncf 15056 |
| Copyright terms: Public domain | W3C validator |