| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zex | Unicode version | ||
| Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8123 |
. 2
| |
| 2 | zsscn 9454 |
. 2
| |
| 3 | 1, 2 | ssexi 4222 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-neg 8320 df-z 9447 |
| This theorem is referenced by: dfuzi 9557 uzval 9724 uzf 9725 fzval 10206 fzf 10208 flval 10492 frec2uzrand 10627 frec2uzf1od 10628 frecfzennn 10648 uzennn 10658 hashinfom 11000 climz 11803 serclim0 11816 climaddc1 11840 climmulc2 11842 climsubc1 11843 climsubc2 11844 climle 11845 climlec2 11852 iserabs 11986 isumshft 12001 explecnv 12016 prodfclim1 12055 qnumval 12707 qdenval 12708 odzval 12764 znnen 12969 exmidunben 12997 qnnen 13002 fngsum 13421 igsumvalx 13422 mulgfvalg 13658 mulgex 13660 zringplusg 14561 zringmulr 14563 zringmpg 14570 zrhval2 14583 lmres 14922 climcncf 15258 |
| Copyright terms: Public domain | W3C validator |