![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zex | Unicode version |
Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
zex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7998 |
. 2
![]() ![]() ![]() ![]() | |
2 | zsscn 9328 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | ssexi 4168 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-neg 8195 df-z 9321 |
This theorem is referenced by: dfuzi 9430 uzval 9597 uzf 9598 fzval 10079 fzf 10081 flval 10344 frec2uzrand 10479 frec2uzf1od 10480 frecfzennn 10500 uzennn 10510 hashinfom 10852 climz 11438 serclim0 11451 climaddc1 11475 climmulc2 11477 climsubc1 11478 climsubc2 11479 climle 11480 climlec2 11487 iserabs 11621 isumshft 11636 explecnv 11651 prodfclim1 11690 qnumval 12326 qdenval 12327 odzval 12382 znnen 12558 exmidunben 12586 qnnen 12591 fngsum 12974 igsumvalx 12975 mulgfvalg 13194 mulgex 13196 zringplusg 14096 zringmulr 14098 zringmpg 14105 zrhval2 14118 lmres 14427 climcncf 14763 |
Copyright terms: Public domain | W3C validator |