| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zex | Unicode version | ||
| Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8084 |
. 2
| |
| 2 | zsscn 9415 |
. 2
| |
| 3 | 1, 2 | ssexi 4198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-neg 8281 df-z 9408 |
| This theorem is referenced by: dfuzi 9518 uzval 9685 uzf 9686 fzval 10167 fzf 10169 flval 10452 frec2uzrand 10587 frec2uzf1od 10588 frecfzennn 10608 uzennn 10618 hashinfom 10960 climz 11718 serclim0 11731 climaddc1 11755 climmulc2 11757 climsubc1 11758 climsubc2 11759 climle 11760 climlec2 11767 iserabs 11901 isumshft 11916 explecnv 11931 prodfclim1 11970 qnumval 12622 qdenval 12623 odzval 12679 znnen 12884 exmidunben 12912 qnnen 12917 fngsum 13335 igsumvalx 13336 mulgfvalg 13572 mulgex 13574 zringplusg 14474 zringmulr 14476 zringmpg 14483 zrhval2 14496 lmres 14835 climcncf 15171 |
| Copyright terms: Public domain | W3C validator |