ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zssre Unicode version

Theorem zssre 9453
Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
zssre  |-  ZZ  C_  RR

Proof of Theorem zssre
StepHypRef Expression
1 zre 9450 . 2  |-  ( x  e.  ZZ  ->  x  e.  RR )
21ssriv 3228 1  |-  ZZ  C_  RR
Colors of variables: wff set class
Syntax hints:    C_ wss 3197   RRcr 7998   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-neg 8320  df-z 9447
This theorem is referenced by:  suprzclex  9545  zred  9569  lbzbi  9811  fzval2  10207  zsupcl  10451  infssuzex  10453  infssuzcldc  10455  seq3coll  11064  summodclem2a  11892  fsum3cvg3  11907  prodmodclem2a  12087  gcddvds  12484  dvdslegcd  12485
  Copyright terms: Public domain W3C validator