Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zssre | Unicode version |
Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zssre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9150 | . 2 | |
2 | 1 | ssriv 3128 | 1 |
Colors of variables: wff set class |
Syntax hints: wss 3098 cr 7710 cz 9146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rex 2438 df-rab 2441 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-iota 5128 df-fv 5171 df-ov 5817 df-neg 8028 df-z 9147 |
This theorem is referenced by: suprzclex 9241 zred 9265 lbzbi 9503 fzval2 9893 seq3coll 10690 summodclem2a 11255 fsum3cvg3 11270 prodmodclem2a 11450 zsupcl 11807 infssuzex 11809 infssuzcldc 11811 gcddvds 11819 dvdslegcd 11820 |
Copyright terms: Public domain | W3C validator |