ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zssre Unicode version

Theorem zssre 9291
Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
zssre  |-  ZZ  C_  RR

Proof of Theorem zssre
StepHypRef Expression
1 zre 9288 . 2  |-  ( x  e.  ZZ  ->  x  e.  RR )
21ssriv 3174 1  |-  ZZ  C_  RR
Colors of variables: wff set class
Syntax hints:    C_ wss 3144   RRcr 7841   ZZcz 9284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5900  df-neg 8162  df-z 9285
This theorem is referenced by:  suprzclex  9382  zred  9406  lbzbi  9648  fzval2  10043  seq3coll  10857  summodclem2a  11424  fsum3cvg3  11439  prodmodclem2a  11619  zsupcl  11983  infssuzex  11985  infssuzcldc  11987  gcddvds  11999  dvdslegcd  12000
  Copyright terms: Public domain W3C validator