ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsscn GIF version

Theorem zsscn 8819
Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
zsscn ℤ ⊆ ℂ

Proof of Theorem zsscn
StepHypRef Expression
1 zcn 8816 . 2 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
21ssriv 3030 1 ℤ ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wss 3000  cc 7409  cz 8811
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-resscn 7498
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-rab 2369  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-iota 4993  df-fv 5036  df-ov 5669  df-neg 7717  df-z 8812
This theorem is referenced by:  zex  8820  divfnzn  9167  zexpcl  10031  fsumzcl  10857
  Copyright terms: Public domain W3C validator