| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zsscn | GIF version | ||
| Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zsscn | ⊢ ℤ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9333 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ssriv 3188 | 1 ⊢ ℤ ⊆ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3157 ℂcc 7879 ℤcz 9328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7973 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-neg 8202 df-z 9329 |
| This theorem is referenced by: zex 9337 divfnzn 9697 zexpcl 10648 fsumzcl 11569 fprodzcl 11776 4sqlem11 12580 zringbas 14162 zring0 14166 lmbrf 14461 lmres 14494 lgsfcl2 15257 2sqlem6 15371 |
| Copyright terms: Public domain | W3C validator |