![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zsscn | GIF version |
Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zsscn | ⊢ ℤ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9328 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3187 | 1 ⊢ ℤ ⊆ ℂ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3157 ℂcc 7875 ℤcz 9323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7969 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-neg 8198 df-z 9324 |
This theorem is referenced by: zex 9332 divfnzn 9692 zexpcl 10631 fsumzcl 11551 fprodzcl 11758 4sqlem11 12546 zringbas 14128 zring0 14132 lmbrf 14427 lmres 14460 lgsfcl2 15214 2sqlem6 15328 |
Copyright terms: Public domain | W3C validator |