| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zsscn | GIF version | ||
| Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zsscn | ⊢ ℤ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9419 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ssriv 3208 | 1 ⊢ ℤ ⊆ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3177 ℂcc 7965 ℤcz 9414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-resscn 8059 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 df-neg 8288 df-z 9415 |
| This theorem is referenced by: zex 9423 divfnzn 9784 zexpcl 10743 fsumzcl 11879 fprodzcl 12086 4sqlem11 12890 zringbas 14525 zring0 14529 lmbrf 14854 lmres 14887 lgsfcl2 15650 2sqlem6 15764 |
| Copyright terms: Public domain | W3C validator |