Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zcn | Unicode version |
Description: An integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
zcn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9216 | . 2 | |
2 | 1 | recnd 7948 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cc 7772 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 |
This theorem is referenced by: zsscn 9220 zaddcllempos 9249 peano2zm 9250 zaddcllemneg 9251 zaddcl 9252 zsubcl 9253 zrevaddcl 9262 nzadd 9264 zlem1lt 9268 zltlem1 9269 zapne 9286 zdiv 9300 zdivadd 9301 zdivmul 9302 zextlt 9304 zneo 9313 zeo2 9318 peano5uzti 9320 zindd 9330 divfnzn 9580 qmulz 9582 zq 9585 qaddcl 9594 qnegcl 9595 qmulcl 9596 qreccl 9601 fzen 9999 uzsubsubfz 10003 fz01en 10009 fzmmmeqm 10014 fzsubel 10016 fztp 10034 fzsuc2 10035 fzrev2 10041 fzrev3 10043 elfzp1b 10053 fzrevral 10061 fzrevral2 10062 fzrevral3 10063 fzshftral 10064 fzoaddel2 10149 fzosubel2 10151 eluzgtdifelfzo 10153 fzocatel 10155 elfzom1elp1fzo 10158 fzval3 10160 zpnn0elfzo1 10164 fzosplitprm1 10190 fzoshftral 10194 flqzadd 10254 2tnp1ge0ge0 10257 ceilid 10271 intfracq 10276 zmod10 10296 modqmuladdnn0 10324 addmodlteq 10354 frecfzen2 10383 ser3mono 10434 m1expeven 10523 expsubap 10524 zesq 10594 sqoddm1div8 10629 bccmpl 10688 shftuz 10781 nnabscl 11064 climshftlemg 11265 climshft 11267 mptfzshft 11405 fsumrev 11406 fisum0diag2 11410 efexp 11645 efzval 11646 demoivre 11735 dvdsval2 11752 iddvds 11766 1dvds 11767 dvds0 11768 negdvdsb 11769 dvdsnegb 11770 0dvds 11773 dvdsmul1 11775 iddvdsexp 11777 muldvds1 11778 muldvds2 11779 dvdscmul 11780 dvdsmulc 11781 summodnegmod 11784 modmulconst 11785 dvds2ln 11786 dvds2add 11787 dvds2sub 11788 dvdstr 11790 dvdssub2 11797 dvdsadd 11798 dvdsaddr 11799 dvdssub 11800 dvdssubr 11801 dvdsadd2b 11802 dvdsabseq 11807 divconjdvds 11809 alzdvds 11814 addmodlteqALT 11819 zeo3 11827 odd2np1lem 11831 odd2np1 11832 even2n 11833 oddp1even 11835 mulsucdiv2z 11844 zob 11850 ltoddhalfle 11852 halfleoddlt 11853 opoe 11854 omoe 11855 opeo 11856 omeo 11857 m1exp1 11860 divalgb 11884 divalgmod 11886 modremain 11888 ndvdssub 11889 ndvdsadd 11890 flodddiv4 11893 flodddiv4t2lthalf 11896 gcdneg 11937 gcdadd 11940 gcdid 11941 modgcd 11946 dvdsgcd 11967 mulgcd 11971 absmulgcd 11972 mulgcdr 11973 gcddiv 11974 gcdmultiplez 11976 dvdssqim 11979 dvdssq 11986 bezoutr1 11988 lcmneg 12028 lcmgcdlem 12031 lcmgcd 12032 lcmid 12034 lcm1 12035 coprmdvds 12046 coprmdvds2 12047 qredeq 12050 qredeu 12051 divgcdcoprmex 12056 cncongr1 12057 cncongr2 12058 prmdvdsexp 12102 rpexp1i 12108 sqrt2irr 12116 divnumden 12150 phiprmpw 12176 nnnn0modprm0 12209 modprmn0modprm0 12210 coprimeprodsq2 12212 pclemub 12241 pcprendvds2 12245 pcmul 12255 pcneg 12278 fldivp1 12300 prmpwdvds 12307 zgz 12325 ef2kpi 13521 efper 13522 sinperlem 13523 sin2kpi 13526 cos2kpi 13527 abssinper 13561 sinkpi 13562 coskpi 13563 cxpexprp 13610 lgslem3 13697 lgsneg 13719 lgsdir2lem2 13724 lgsdir2lem4 13726 lgsdir2 13728 lgssq 13735 lgsmulsqcoprm 13741 lgsdirnn0 13742 2sqlem2 13745 2sqlem7 13751 |
Copyright terms: Public domain | W3C validator |