ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zringbas Unicode version

Theorem zringbas 14358
Description: The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
zringbas  |-  ZZ  =  ( Base ` ring )

Proof of Theorem zringbas
StepHypRef Expression
1 df-zring 14353 . . . 4  |-ring  =  (flds  ZZ )
21a1i 9 . . 3  |-  ( T. 
->ring  =  (flds  ZZ ) )
3 cnfldbas 14322 . . . 4  |-  CC  =  ( Base ` fld )
43a1i 9 . . 3  |-  ( T. 
->  CC  =  ( Base ` fld ) )
5 cnfldex 14321 . . . 4  |-fld  e.  _V
65a1i 9 . . 3  |-  ( T. 
->fld  e. 
_V )
7 zsscn 9380 . . . 4  |-  ZZ  C_  CC
87a1i 9 . . 3  |-  ( T. 
->  ZZ  C_  CC )
92, 4, 6, 8ressbas2d 12900 . 2  |-  ( T. 
->  ZZ  =  ( Base ` ring ) )
109mptru 1382 1  |-  ZZ  =  ( Base ` ring )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   T. wtru 1374    e. wcel 2176   _Vcvv 2772    C_ wss 3166   ` cfv 5271  (class class class)co 5944   CCcc 7923   ZZcz 9372   Basecbs 12832   ↾s cress 12833  ℂfldccnfld 14318  ℤringczring 14352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-dec 9505  df-uz 9649  df-rp 9776  df-fz 10131  df-cj 11153  df-abs 11310  df-struct 12834  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-starv 12924  df-tset 12928  df-ple 12929  df-ds 12931  df-unif 12932  df-topgen 13092  df-bl 14308  df-mopn 14309  df-fg 14311  df-metu 14312  df-cnfld 14319  df-zring 14353
This theorem is referenced by:  dvdsrzring  14365  zringinvg  14366  expghmap  14369  mulgghm2  14370  mulgrhm  14371  mulgrhm2  14372  znlidl  14396  znbas  14406  znzrh2  14408  znzrhfo  14410  zndvds  14411  znf1o  14413  znidom  14419  znidomb  14420  znunit  14421  znrrg  14422  lgseisenlem3  15549  lgseisenlem4  15550
  Copyright terms: Public domain W3C validator