| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nn0 | GIF version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 0nn0 | ⊢ 0 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . 2 ⊢ 0 = 0 | |
| 2 | elnn0 9279 | . . . 4 ⊢ (0 ∈ ℕ0 ↔ (0 ∈ ℕ ∨ 0 = 0)) | |
| 3 | 2 | biimpri 133 | . . 3 ⊢ ((0 ∈ ℕ ∨ 0 = 0) → 0 ∈ ℕ0) |
| 4 | 3 | olcs 737 | . 2 ⊢ (0 = 0 → 0 ∈ ℕ0) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 0 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 = wceq 1372 ∈ wcel 2175 0cc0 7907 ℕcn 9018 ℕ0cn0 9277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-1cn 8000 ax-icn 8002 ax-addcl 8003 ax-mulcl 8005 ax-i2m1 8012 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-n0 9278 |
| This theorem is referenced by: 0xnn0 9346 elnn0z 9367 nn0ind-raph 9472 10nn0 9503 declei 9521 numlti 9522 nummul1c 9534 decaddc2 9541 decrmanc 9542 decrmac 9543 decaddm10 9544 decaddi 9545 decaddci 9546 decaddci2 9547 decmul1 9549 decmulnc 9552 6p5e11 9558 7p4e11 9561 8p3e11 9566 9p2e11 9572 10p10e20 9580 fz01or 10215 0elfz 10222 4fvwrd4 10244 fvinim0ffz 10351 0tonninf 10566 exple1 10721 sq10 10838 bc0k 10882 bcn1 10884 bccl 10893 fihasheq0 10919 iswrdiz 10976 iswrddm0 10993 fsumnn0cl 11633 binom 11714 bcxmas 11719 isumnn0nn 11723 geoserap 11737 ef0lem 11890 ege2le3 11901 ef4p 11924 efgt1p2 11925 efgt1p 11926 nn0o 12137 ndvdssub 12160 5ndvds3 12164 bits0 12178 0bits 12189 gcdval 12199 gcdcl 12206 dfgcd3 12250 nn0seqcvgd 12282 algcvg 12289 eucalg 12300 lcmcl 12313 pw2dvdslemn 12406 pclem0 12528 pcpre1 12534 pcfac 12592 dec5dvds2 12655 2exp11 12678 2exp16 12679 ennnfonelemj0 12691 ennnfonelem0 12695 ennnfonelem1 12697 plendxnocndx 12964 slotsdifdsndx 12975 slotsdifunifndx 12982 imasvalstrd 13020 cnfldstr 14238 nn0subm 14263 znf1o 14331 fczpsrbag 14351 psr1clfi 14368 mplsubgfilemm 14378 dveflem 15116 plyconst 15135 plycolemc 15148 pilem3 15173 1kp2ke3k 15524 ex-fac 15528 012of 15794 isomninnlem 15833 iswomninnlem 15852 iswomni0 15854 ismkvnnlem 15855 |
| Copyright terms: Public domain | W3C validator |