![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0nn0 | GIF version |
Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
0nn0 | ⊢ 0 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . 2 ⊢ 0 = 0 | |
2 | elnn0 9245 | . . . 4 ⊢ (0 ∈ ℕ0 ↔ (0 ∈ ℕ ∨ 0 = 0)) | |
3 | 2 | biimpri 133 | . . 3 ⊢ ((0 ∈ ℕ ∨ 0 = 0) → 0 ∈ ℕ0) |
4 | 3 | olcs 737 | . 2 ⊢ (0 = 0 → 0 ∈ ℕ0) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 0 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2164 0cc0 7874 ℕcn 8984 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-i2m1 7979 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-n0 9244 |
This theorem is referenced by: 0xnn0 9312 elnn0z 9333 nn0ind-raph 9437 10nn0 9468 declei 9486 numlti 9487 nummul1c 9499 decaddc2 9506 decrmanc 9507 decrmac 9508 decaddm10 9509 decaddi 9510 decaddci 9511 decaddci2 9512 decmul1 9514 decmulnc 9517 6p5e11 9523 7p4e11 9526 8p3e11 9531 9p2e11 9537 10p10e20 9545 fz01or 10180 0elfz 10187 4fvwrd4 10209 fvinim0ffz 10311 0tonninf 10514 exple1 10669 sq10 10786 bc0k 10830 bcn1 10832 bccl 10841 fihasheq0 10867 iswrdiz 10924 iswrddm0 10941 fsumnn0cl 11549 binom 11630 bcxmas 11635 isumnn0nn 11639 geoserap 11653 ef0lem 11806 ege2le3 11817 ef4p 11840 efgt1p2 11841 efgt1p 11842 nn0o 12051 ndvdssub 12074 gcdval 12099 gcdcl 12106 dfgcd3 12150 nn0seqcvgd 12182 algcvg 12189 eucalg 12200 lcmcl 12213 pw2dvdslemn 12306 pclem0 12427 pcpre1 12433 pcfac 12491 ennnfonelemj0 12561 ennnfonelem0 12565 ennnfonelem1 12567 slotsdifdsndx 12841 slotsdifunifndx 12848 cnfldstr 14057 nn0subm 14082 znf1o 14150 fczpsrbag 14168 dveflem 14905 plyconst 14924 plycolemc 14936 pilem3 14959 1kp2ke3k 15286 ex-fac 15290 012of 15556 isomninnlem 15590 iswomninnlem 15609 iswomni0 15611 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |