| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nn0 | GIF version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 0nn0 | ⊢ 0 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ 0 = 0 | |
| 2 | elnn0 9268 | . . . 4 ⊢ (0 ∈ ℕ0 ↔ (0 ∈ ℕ ∨ 0 = 0)) | |
| 3 | 2 | biimpri 133 | . . 3 ⊢ ((0 ∈ ℕ ∨ 0 = 0) → 0 ∈ ℕ0) |
| 4 | 3 | olcs 737 | . 2 ⊢ (0 = 0 → 0 ∈ ℕ0) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 0 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2167 0cc0 7896 ℕcn 9007 ℕ0cn0 9266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-i2m1 8001 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-n0 9267 |
| This theorem is referenced by: 0xnn0 9335 elnn0z 9356 nn0ind-raph 9460 10nn0 9491 declei 9509 numlti 9510 nummul1c 9522 decaddc2 9529 decrmanc 9530 decrmac 9531 decaddm10 9532 decaddi 9533 decaddci 9534 decaddci2 9535 decmul1 9537 decmulnc 9540 6p5e11 9546 7p4e11 9549 8p3e11 9554 9p2e11 9560 10p10e20 9568 fz01or 10203 0elfz 10210 4fvwrd4 10232 fvinim0ffz 10334 0tonninf 10549 exple1 10704 sq10 10821 bc0k 10865 bcn1 10867 bccl 10876 fihasheq0 10902 iswrdiz 10959 iswrddm0 10976 fsumnn0cl 11585 binom 11666 bcxmas 11671 isumnn0nn 11675 geoserap 11689 ef0lem 11842 ege2le3 11853 ef4p 11876 efgt1p2 11877 efgt1p 11878 nn0o 12089 ndvdssub 12112 5ndvds3 12116 bits0 12130 0bits 12141 gcdval 12151 gcdcl 12158 dfgcd3 12202 nn0seqcvgd 12234 algcvg 12241 eucalg 12252 lcmcl 12265 pw2dvdslemn 12358 pclem0 12480 pcpre1 12486 pcfac 12544 dec5dvds2 12607 2exp11 12630 2exp16 12631 ennnfonelemj0 12643 ennnfonelem0 12647 ennnfonelem1 12649 plendxnocndx 12916 slotsdifdsndx 12927 slotsdifunifndx 12934 imasvalstrd 12972 cnfldstr 14190 nn0subm 14215 znf1o 14283 fczpsrbag 14301 psr1clfi 14316 dveflem 15046 plyconst 15065 plycolemc 15078 pilem3 15103 1kp2ke3k 15454 ex-fac 15458 012of 15724 isomninnlem 15761 iswomninnlem 15780 iswomni0 15782 ismkvnnlem 15783 |
| Copyright terms: Public domain | W3C validator |