![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0nn0 | GIF version |
Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
0nn0 | ⊢ 0 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . 2 ⊢ 0 = 0 | |
2 | elnn0 9242 | . . . 4 ⊢ (0 ∈ ℕ0 ↔ (0 ∈ ℕ ∨ 0 = 0)) | |
3 | 2 | biimpri 133 | . . 3 ⊢ ((0 ∈ ℕ ∨ 0 = 0) → 0 ∈ ℕ0) |
4 | 3 | olcs 737 | . 2 ⊢ (0 = 0 → 0 ∈ ℕ0) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 0 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2164 0cc0 7872 ℕcn 8982 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-i2m1 7977 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-n0 9241 |
This theorem is referenced by: 0xnn0 9309 elnn0z 9330 nn0ind-raph 9434 10nn0 9465 declei 9483 numlti 9484 nummul1c 9496 decaddc2 9503 decrmanc 9504 decrmac 9505 decaddm10 9506 decaddi 9507 decaddci 9508 decaddci2 9509 decmul1 9511 decmulnc 9514 6p5e11 9520 7p4e11 9523 8p3e11 9528 9p2e11 9534 10p10e20 9542 fz01or 10177 0elfz 10184 4fvwrd4 10206 fvinim0ffz 10308 0tonninf 10511 exple1 10666 sq10 10783 bc0k 10827 bcn1 10829 bccl 10838 fihasheq0 10864 iswrdiz 10921 iswrddm0 10938 fsumnn0cl 11546 binom 11627 bcxmas 11632 isumnn0nn 11636 geoserap 11650 ef0lem 11803 ege2le3 11814 ef4p 11837 efgt1p2 11838 efgt1p 11839 nn0o 12048 ndvdssub 12071 gcdval 12096 gcdcl 12103 dfgcd3 12147 nn0seqcvgd 12179 algcvg 12186 eucalg 12197 lcmcl 12210 pw2dvdslemn 12303 pclem0 12424 pcpre1 12430 pcfac 12488 ennnfonelemj0 12558 ennnfonelem0 12562 ennnfonelem1 12564 slotsdifdsndx 12838 slotsdifunifndx 12845 nn0subm 14071 znf1o 14139 fczpsrbag 14157 dveflem 14872 plyconst 14891 pilem3 14918 1kp2ke3k 15216 ex-fac 15220 012of 15486 isomninnlem 15520 iswomninnlem 15539 iswomni0 15541 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |