| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nn0 | GIF version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 0nn0 | ⊢ 0 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ 0 = 0 | |
| 2 | elnn0 9270 | . . . 4 ⊢ (0 ∈ ℕ0 ↔ (0 ∈ ℕ ∨ 0 = 0)) | |
| 3 | 2 | biimpri 133 | . . 3 ⊢ ((0 ∈ ℕ ∨ 0 = 0) → 0 ∈ ℕ0) |
| 4 | 3 | olcs 737 | . 2 ⊢ (0 = 0 → 0 ∈ ℕ0) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 0 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2167 0cc0 7898 ℕcn 9009 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-i2m1 8003 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-n0 9269 |
| This theorem is referenced by: 0xnn0 9337 elnn0z 9358 nn0ind-raph 9462 10nn0 9493 declei 9511 numlti 9512 nummul1c 9524 decaddc2 9531 decrmanc 9532 decrmac 9533 decaddm10 9534 decaddi 9535 decaddci 9536 decaddci2 9537 decmul1 9539 decmulnc 9542 6p5e11 9548 7p4e11 9551 8p3e11 9556 9p2e11 9562 10p10e20 9570 fz01or 10205 0elfz 10212 4fvwrd4 10234 fvinim0ffz 10336 0tonninf 10551 exple1 10706 sq10 10823 bc0k 10867 bcn1 10869 bccl 10878 fihasheq0 10904 iswrdiz 10961 iswrddm0 10978 fsumnn0cl 11587 binom 11668 bcxmas 11673 isumnn0nn 11677 geoserap 11691 ef0lem 11844 ege2le3 11855 ef4p 11878 efgt1p2 11879 efgt1p 11880 nn0o 12091 ndvdssub 12114 5ndvds3 12118 bits0 12132 0bits 12143 gcdval 12153 gcdcl 12160 dfgcd3 12204 nn0seqcvgd 12236 algcvg 12243 eucalg 12254 lcmcl 12267 pw2dvdslemn 12360 pclem0 12482 pcpre1 12488 pcfac 12546 dec5dvds2 12609 2exp11 12632 2exp16 12633 ennnfonelemj0 12645 ennnfonelem0 12649 ennnfonelem1 12651 plendxnocndx 12918 slotsdifdsndx 12929 slotsdifunifndx 12936 imasvalstrd 12974 cnfldstr 14192 nn0subm 14217 znf1o 14285 fczpsrbag 14305 psr1clfi 14322 mplsubgfilemm 14332 dveflem 15070 plyconst 15089 plycolemc 15102 pilem3 15127 1kp2ke3k 15478 ex-fac 15482 012of 15748 isomninnlem 15787 iswomninnlem 15806 iswomni0 15808 ismkvnnlem 15809 |
| Copyright terms: Public domain | W3C validator |