Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0nn0 | GIF version |
Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
0nn0 | ⊢ 0 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 ⊢ 0 = 0 | |
2 | elnn0 9112 | . . . 4 ⊢ (0 ∈ ℕ0 ↔ (0 ∈ ℕ ∨ 0 = 0)) | |
3 | 2 | biimpri 132 | . . 3 ⊢ ((0 ∈ ℕ ∨ 0 = 0) → 0 ∈ ℕ0) |
4 | 3 | olcs 726 | . 2 ⊢ (0 = 0 → 0 ∈ ℕ0) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 0 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 = wceq 1343 ∈ wcel 2136 0cc0 7749 ℕcn 8853 ℕ0cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-mulcl 7847 ax-i2m1 7854 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-sn 3581 df-n0 9111 |
This theorem is referenced by: 0xnn0 9179 elnn0z 9200 nn0ind-raph 9304 10nn0 9335 declei 9353 numlti 9354 nummul1c 9366 decaddc2 9373 decrmanc 9374 decrmac 9375 decaddm10 9376 decaddi 9377 decaddci 9378 decaddci2 9379 decmul1 9381 decmulnc 9384 6p5e11 9390 7p4e11 9393 8p3e11 9398 9p2e11 9404 10p10e20 9412 fz01or 10042 0elfz 10049 4fvwrd4 10071 fvinim0ffz 10172 0tonninf 10370 exple1 10507 sq10 10621 bc0k 10665 bcn1 10667 bccl 10676 fihasheq0 10703 fsumnn0cl 11340 binom 11421 bcxmas 11426 isumnn0nn 11430 geoserap 11444 ef0lem 11597 ege2le3 11608 ef4p 11631 efgt1p2 11632 efgt1p 11633 nn0o 11840 ndvdssub 11863 gcdval 11888 gcdcl 11895 dfgcd3 11939 nn0seqcvgd 11969 algcvg 11976 eucalg 11987 lcmcl 12000 pw2dvdslemn 12093 pclem0 12214 pcpre1 12220 pcfac 12276 ennnfonelemj0 12330 ennnfonelem0 12334 ennnfonelem1 12336 dveflem 13287 pilem3 13304 1kp2ke3k 13565 ex-fac 13569 012of 13835 isomninnlem 13869 iswomninnlem 13888 iswomni0 13890 ismkvnnlem 13891 |
Copyright terms: Public domain | W3C validator |