| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0nn0 | GIF version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) | 
| Ref | Expression | 
|---|---|
| 0nn0 | ⊢ 0 ∈ ℕ0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ 0 = 0 | |
| 2 | elnn0 9251 | . . . 4 ⊢ (0 ∈ ℕ0 ↔ (0 ∈ ℕ ∨ 0 = 0)) | |
| 3 | 2 | biimpri 133 | . . 3 ⊢ ((0 ∈ ℕ ∨ 0 = 0) → 0 ∈ ℕ0) | 
| 4 | 3 | olcs 737 | . 2 ⊢ (0 = 0 → 0 ∈ ℕ0) | 
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 0 ∈ ℕ0 | 
| Colors of variables: wff set class | 
| Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2167 0cc0 7879 ℕcn 8990 ℕ0cn0 9249 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-i2m1 7984 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-n0 9250 | 
| This theorem is referenced by: 0xnn0 9318 elnn0z 9339 nn0ind-raph 9443 10nn0 9474 declei 9492 numlti 9493 nummul1c 9505 decaddc2 9512 decrmanc 9513 decrmac 9514 decaddm10 9515 decaddi 9516 decaddci 9517 decaddci2 9518 decmul1 9520 decmulnc 9523 6p5e11 9529 7p4e11 9532 8p3e11 9537 9p2e11 9543 10p10e20 9551 fz01or 10186 0elfz 10193 4fvwrd4 10215 fvinim0ffz 10317 0tonninf 10532 exple1 10687 sq10 10804 bc0k 10848 bcn1 10850 bccl 10859 fihasheq0 10885 iswrdiz 10942 iswrddm0 10959 fsumnn0cl 11568 binom 11649 bcxmas 11654 isumnn0nn 11658 geoserap 11672 ef0lem 11825 ege2le3 11836 ef4p 11859 efgt1p2 11860 efgt1p 11861 nn0o 12072 ndvdssub 12095 5ndvds3 12099 bits0 12112 gcdval 12126 gcdcl 12133 dfgcd3 12177 nn0seqcvgd 12209 algcvg 12216 eucalg 12227 lcmcl 12240 pw2dvdslemn 12333 pclem0 12455 pcpre1 12461 pcfac 12519 dec5dvds2 12582 2exp11 12605 2exp16 12606 ennnfonelemj0 12618 ennnfonelem0 12622 ennnfonelem1 12624 slotsdifdsndx 12898 slotsdifunifndx 12905 cnfldstr 14114 nn0subm 14139 znf1o 14207 fczpsrbag 14225 dveflem 14962 plyconst 14981 plycolemc 14994 pilem3 15019 1kp2ke3k 15370 ex-fac 15374 012of 15640 isomninnlem 15674 iswomninnlem 15693 iswomni0 15695 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |