| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nn0 | GIF version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 0nn0 | ⊢ 0 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . 2 ⊢ 0 = 0 | |
| 2 | elnn0 9317 | . . . 4 ⊢ (0 ∈ ℕ0 ↔ (0 ∈ ℕ ∨ 0 = 0)) | |
| 3 | 2 | biimpri 133 | . . 3 ⊢ ((0 ∈ ℕ ∨ 0 = 0) → 0 ∈ ℕ0) |
| 4 | 3 | olcs 738 | . 2 ⊢ (0 = 0 → 0 ∈ ℕ0) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 0 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 710 = wceq 1373 ∈ wcel 2177 0cc0 7945 ℕcn 9056 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-mulcl 8043 ax-i2m1 8050 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-n0 9316 |
| This theorem is referenced by: 0xnn0 9384 elnn0z 9405 nn0ind-raph 9510 10nn0 9541 declei 9559 numlti 9560 nummul1c 9572 decaddc2 9579 decrmanc 9580 decrmac 9581 decaddm10 9582 decaddi 9583 decaddci 9584 decaddci2 9585 decmul1 9587 decmulnc 9590 6p5e11 9596 7p4e11 9599 8p3e11 9604 9p2e11 9610 10p10e20 9618 fz01or 10253 0elfz 10260 4fvwrd4 10282 fvinim0ffz 10392 0tonninf 10607 exple1 10762 sq10 10879 bc0k 10923 bcn1 10925 bccl 10934 fihasheq0 10960 iswrdiz 11023 iswrddm0 11040 s1leng 11101 s1fv 11103 eqs1 11105 s111 11108 pfx00g 11151 fsumnn0cl 11789 binom 11870 bcxmas 11875 isumnn0nn 11879 geoserap 11893 ef0lem 12046 ege2le3 12057 ef4p 12080 efgt1p2 12081 efgt1p 12082 nn0o 12293 ndvdssub 12316 5ndvds3 12320 bits0 12334 0bits 12345 gcdval 12355 gcdcl 12362 dfgcd3 12406 nn0seqcvgd 12438 algcvg 12445 eucalg 12456 lcmcl 12469 pw2dvdslemn 12562 pclem0 12684 pcpre1 12690 pcfac 12748 dec5dvds2 12811 2exp11 12834 2exp16 12835 ennnfonelemj0 12847 ennnfonelem0 12851 ennnfonelem1 12853 plendxnocndx 13121 slotsdifdsndx 13132 slotsdifunifndx 13139 imasvalstrd 13177 cnfldstr 14395 nn0subm 14420 znf1o 14488 fczpsrbag 14508 psr1clfi 14525 mplsubgfilemm 14535 dveflem 15273 plyconst 15292 plycolemc 15305 pilem3 15330 1kp2ke3k 15799 ex-fac 15803 012of 16069 isomninnlem 16110 iswomninnlem 16129 iswomni0 16131 ismkvnnlem 16132 |
| Copyright terms: Public domain | W3C validator |