| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nn0 | GIF version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 0nn0 | ⊢ 0 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . 2 ⊢ 0 = 0 | |
| 2 | elnn0 9296 | . . . 4 ⊢ (0 ∈ ℕ0 ↔ (0 ∈ ℕ ∨ 0 = 0)) | |
| 3 | 2 | biimpri 133 | . . 3 ⊢ ((0 ∈ ℕ ∨ 0 = 0) → 0 ∈ ℕ0) |
| 4 | 3 | olcs 737 | . 2 ⊢ (0 = 0 → 0 ∈ ℕ0) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 0 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 = wceq 1372 ∈ wcel 2175 0cc0 7924 ℕcn 9035 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-mulcl 8022 ax-i2m1 8029 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-n0 9295 |
| This theorem is referenced by: 0xnn0 9363 elnn0z 9384 nn0ind-raph 9489 10nn0 9520 declei 9538 numlti 9539 nummul1c 9551 decaddc2 9558 decrmanc 9559 decrmac 9560 decaddm10 9561 decaddi 9562 decaddci 9563 decaddci2 9564 decmul1 9566 decmulnc 9569 6p5e11 9575 7p4e11 9578 8p3e11 9583 9p2e11 9589 10p10e20 9597 fz01or 10232 0elfz 10239 4fvwrd4 10261 fvinim0ffz 10368 0tonninf 10583 exple1 10738 sq10 10855 bc0k 10899 bcn1 10901 bccl 10910 fihasheq0 10936 iswrdiz 10999 iswrddm0 11016 fsumnn0cl 11656 binom 11737 bcxmas 11742 isumnn0nn 11746 geoserap 11760 ef0lem 11913 ege2le3 11924 ef4p 11947 efgt1p2 11948 efgt1p 11949 nn0o 12160 ndvdssub 12183 5ndvds3 12187 bits0 12201 0bits 12212 gcdval 12222 gcdcl 12229 dfgcd3 12273 nn0seqcvgd 12305 algcvg 12312 eucalg 12323 lcmcl 12336 pw2dvdslemn 12429 pclem0 12551 pcpre1 12557 pcfac 12615 dec5dvds2 12678 2exp11 12701 2exp16 12702 ennnfonelemj0 12714 ennnfonelem0 12718 ennnfonelem1 12720 plendxnocndx 12988 slotsdifdsndx 12999 slotsdifunifndx 13006 imasvalstrd 13044 cnfldstr 14262 nn0subm 14287 znf1o 14355 fczpsrbag 14375 psr1clfi 14392 mplsubgfilemm 14402 dveflem 15140 plyconst 15159 plycolemc 15172 pilem3 15197 1kp2ke3k 15593 ex-fac 15597 012of 15863 isomninnlem 15902 iswomninnlem 15921 iswomni0 15923 ismkvnnlem 15924 |
| Copyright terms: Public domain | W3C validator |