| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nn0 | GIF version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 0nn0 | ⊢ 0 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . 2 ⊢ 0 = 0 | |
| 2 | elnn0 9367 | . . . 4 ⊢ (0 ∈ ℕ0 ↔ (0 ∈ ℕ ∨ 0 = 0)) | |
| 3 | 2 | biimpri 133 | . . 3 ⊢ ((0 ∈ ℕ ∨ 0 = 0) → 0 ∈ ℕ0) |
| 4 | 3 | olcs 741 | . 2 ⊢ (0 = 0 → 0 ∈ ℕ0) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 0 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 713 = wceq 1395 ∈ wcel 2200 0cc0 7995 ℕcn 9106 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-i2m1 8100 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-n0 9366 |
| This theorem is referenced by: 0xnn0 9434 elnn0z 9455 nn0ind-raph 9560 10nn0 9591 declei 9609 numlti 9610 nummul1c 9622 decaddc2 9629 decrmanc 9630 decrmac 9631 decaddm10 9632 decaddi 9633 decaddci 9634 decaddci2 9635 decmul1 9637 decmulnc 9640 6p5e11 9646 7p4e11 9649 8p3e11 9654 9p2e11 9660 10p10e20 9668 fz01or 10303 0elfz 10310 4fvwrd4 10332 fvinim0ffz 10442 0tonninf 10657 exple1 10812 sq10 10929 bc0k 10973 bcn1 10975 bccl 10984 fihasheq0 11010 iswrdiz 11073 iswrddm0 11090 s1leng 11152 s1fv 11154 eqs1 11156 s111 11159 pfx00g 11202 s2fv0g 11314 s3fv0g 11318 fsumnn0cl 11909 binom 11990 bcxmas 11995 isumnn0nn 11999 geoserap 12013 ef0lem 12166 ege2le3 12177 ef4p 12200 efgt1p2 12201 efgt1p 12202 nn0o 12413 ndvdssub 12436 5ndvds3 12440 bits0 12454 0bits 12465 gcdval 12475 gcdcl 12482 dfgcd3 12526 nn0seqcvgd 12558 algcvg 12565 eucalg 12576 lcmcl 12589 pw2dvdslemn 12682 pclem0 12804 pcpre1 12810 pcfac 12868 dec5dvds2 12931 2exp11 12954 2exp16 12955 ennnfonelemj0 12967 ennnfonelem0 12971 ennnfonelem1 12973 plendxnocndx 13242 slotsdifdsndx 13253 slotsdifunifndx 13260 imasvalstrd 13298 cnfldstr 14516 nn0subm 14541 znf1o 14609 fczpsrbag 14629 psr1clfi 14646 mplsubgfilemm 14656 dveflem 15394 plyconst 15413 plycolemc 15426 pilem3 15451 1kp2ke3k 16046 ex-fac 16050 012of 16316 isomninnlem 16357 iswomninnlem 16376 iswomni0 16378 ismkvnnlem 16379 |
| Copyright terms: Public domain | W3C validator |