ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef4p GIF version

Theorem ef4p 11437
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypothesis
Ref Expression
ef4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef4p (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef4p
StepHypRef Expression
1 ef4p.1 . 2 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
2 df-4 8805 . 2 4 = (3 + 1)
3 3nn0 9019 . 2 3 ∈ ℕ0
4 id 19 . 2 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
5 ax-1cn 7737 . . . 4 1 ∈ ℂ
6 addcl 7769 . . . 4 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ)
75, 6mpan 421 . . 3 (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ)
8 sqcl 10385 . . . 4 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
98halfcld 8988 . . 3 (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ)
107, 9addcld 7809 . 2 (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / 2)) ∈ ℂ)
11 df-3 8804 . . 3 3 = (2 + 1)
12 2nn0 9018 . . 3 2 ∈ ℕ0
13 df-2 8803 . . . 4 2 = (1 + 1)
14 1nn0 9017 . . . 4 1 ∈ ℕ0
155a1i 9 . . . 4 (𝐴 ∈ ℂ → 1 ∈ ℂ)
16 1e0p1 9247 . . . . 5 1 = (0 + 1)
17 0nn0 9016 . . . . 5 0 ∈ ℕ0
18 0cnd 7783 . . . . 5 (𝐴 ∈ ℂ → 0 ∈ ℂ)
191efval2 11408 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
20 nn0uz 9384 . . . . . . . . 9 0 = (ℤ‘0)
2120sumeq1i 11164 . . . . . . . 8 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)
2219, 21eqtr2di 2190 . . . . . . 7 (𝐴 ∈ ℂ → Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘) = (exp‘𝐴))
2322oveq2d 5798 . . . . . 6 (𝐴 ∈ ℂ → (0 + Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)) = (0 + (exp‘𝐴)))
24 efcl 11407 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2524addid2d 7936 . . . . . 6 (𝐴 ∈ ℂ → (0 + (exp‘𝐴)) = (exp‘𝐴))
2623, 25eqtr2d 2174 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = (0 + Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)))
27 eft0val 11436 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
2827oveq2d 5798 . . . . . 6 (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = (0 + 1))
29 0p1e1 8858 . . . . . 6 (0 + 1) = 1
3028, 29eqtrdi 2189 . . . . 5 (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = 1)
311, 16, 17, 4, 18, 26, 30efsep 11434 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = (1 + Σ𝑘 ∈ (ℤ‘1)(𝐹𝑘)))
32 exp1 10330 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
33 fac1 10507 . . . . . . . 8 (!‘1) = 1
3433a1i 9 . . . . . . 7 (𝐴 ∈ ℂ → (!‘1) = 1)
3532, 34oveq12d 5800 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = (𝐴 / 1))
36 div1 8487 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
3735, 36eqtrd 2173 . . . . 5 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
3837oveq2d 5798 . . . 4 (𝐴 ∈ ℂ → (1 + ((𝐴↑1) / (!‘1))) = (1 + 𝐴))
391, 13, 14, 4, 15, 31, 38efsep 11434 . . 3 (𝐴 ∈ ℂ → (exp‘𝐴) = ((1 + 𝐴) + Σ𝑘 ∈ (ℤ‘2)(𝐹𝑘)))
40 fac2 10509 . . . . . 6 (!‘2) = 2
4140oveq2i 5793 . . . . 5 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
4241oveq2i 5793 . . . 4 ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2))
4342a1i 9 . . 3 (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
441, 11, 12, 4, 7, 39, 43efsep 11434 . 2 (𝐴 ∈ ℂ → (exp‘𝐴) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + Σ𝑘 ∈ (ℤ‘3)(𝐹𝑘)))
45 fac3 10510 . . . . 5 (!‘3) = 6
4645oveq2i 5793 . . . 4 ((𝐴↑3) / (!‘3)) = ((𝐴↑3) / 6)
4746oveq2i 5793 . . 3 (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6))
4847a1i 9 . 2 (𝐴 ∈ ℂ → (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)))
491, 2, 3, 4, 10, 44, 48efsep 11434 1 (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481  cmpt 3997  cfv 5131  (class class class)co 5782  cc 7642  0cc0 7644  1c1 7645   + caddc 7647   / cdiv 8456  2c2 8795  3c3 8796  4c4 8797  6c6 8799  0cn0 9001  cuz 9350  cexp 10323  !cfa 10503  Σcsu 11154  expce 11385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391
This theorem is referenced by:  efi4p  11460
  Copyright terms: Public domain W3C validator