Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ef4p | GIF version |
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
Ref | Expression |
---|---|
ef4p.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
Ref | Expression |
---|---|
ef4p | ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ef4p.1 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
2 | df-4 8926 | . 2 ⊢ 4 = (3 + 1) | |
3 | 3nn0 9140 | . 2 ⊢ 3 ∈ ℕ0 | |
4 | id 19 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
5 | ax-1cn 7854 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | addcl 7886 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ) | |
7 | 5, 6 | mpan 422 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ) |
8 | sqcl 10524 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
9 | 8 | halfcld 9109 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ) |
10 | 7, 9 | addcld 7926 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / 2)) ∈ ℂ) |
11 | df-3 8925 | . . 3 ⊢ 3 = (2 + 1) | |
12 | 2nn0 9139 | . . 3 ⊢ 2 ∈ ℕ0 | |
13 | df-2 8924 | . . . 4 ⊢ 2 = (1 + 1) | |
14 | 1nn0 9138 | . . . 4 ⊢ 1 ∈ ℕ0 | |
15 | 5 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) |
16 | 1e0p1 9371 | . . . . 5 ⊢ 1 = (0 + 1) | |
17 | 0nn0 9137 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
18 | 0cnd 7900 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
19 | 1 | efval2 11615 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
20 | nn0uz 9508 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
21 | 20 | sumeq1i 11313 | . . . . . . . 8 ⊢ Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) |
22 | 19, 21 | eqtr2di 2220 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) = (exp‘𝐴)) |
23 | 22 | oveq2d 5866 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘)) = (0 + (exp‘𝐴))) |
24 | efcl 11614 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
25 | 24 | addid2d 8056 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + (exp‘𝐴)) = (exp‘𝐴)) |
26 | 23, 25 | eqtr2d 2204 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘))) |
27 | eft0val 11643 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
28 | 27 | oveq2d 5866 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = (0 + 1)) |
29 | 0p1e1 8979 | . . . . . 6 ⊢ (0 + 1) = 1 | |
30 | 28, 29 | eqtrdi 2219 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = 1) |
31 | 1, 16, 17, 4, 18, 26, 30 | efsep 11641 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (1 + Σ𝑘 ∈ (ℤ≥‘1)(𝐹‘𝑘))) |
32 | exp1 10469 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
33 | fac1 10650 | . . . . . . . 8 ⊢ (!‘1) = 1 | |
34 | 33 | a1i 9 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (!‘1) = 1) |
35 | 32, 34 | oveq12d 5868 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = (𝐴 / 1)) |
36 | div1 8607 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
37 | 35, 36 | eqtrd 2203 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
38 | 37 | oveq2d 5866 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 + ((𝐴↑1) / (!‘1))) = (1 + 𝐴)) |
39 | 1, 13, 14, 4, 15, 31, 38 | efsep 11641 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((1 + 𝐴) + Σ𝑘 ∈ (ℤ≥‘2)(𝐹‘𝑘))) |
40 | fac2 10652 | . . . . . 6 ⊢ (!‘2) = 2 | |
41 | 40 | oveq2i 5861 | . . . . 5 ⊢ ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2) |
42 | 41 | oveq2i 5861 | . . . 4 ⊢ ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2)) |
43 | 42 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2))) |
44 | 1, 11, 12, 4, 7, 39, 43 | efsep 11641 | . 2 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + Σ𝑘 ∈ (ℤ≥‘3)(𝐹‘𝑘))) |
45 | fac3 10653 | . . . . 5 ⊢ (!‘3) = 6 | |
46 | 45 | oveq2i 5861 | . . . 4 ⊢ ((𝐴↑3) / (!‘3)) = ((𝐴↑3) / 6) |
47 | 46 | oveq2i 5861 | . . 3 ⊢ (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) |
48 | 47 | a1i 9 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6))) |
49 | 1, 2, 3, 4, 10, 44, 48 | efsep 11641 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ↦ cmpt 4048 ‘cfv 5196 (class class class)co 5850 ℂcc 7759 0cc0 7761 1c1 7762 + caddc 7764 / cdiv 8576 2c2 8916 3c3 8917 4c4 8918 6c6 8920 ℕ0cn0 9122 ℤ≥cuz 9474 ↑cexp 10462 !cfa 10646 Σcsu 11303 expce 11592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-frec 6367 df-1o 6392 df-oadd 6396 df-er 6509 df-en 6715 df-dom 6716 df-fin 6717 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-5 8927 df-6 8928 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-ico 9838 df-fz 9953 df-fzo 10086 df-seqfrec 10389 df-exp 10463 df-fac 10647 df-ihash 10697 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-clim 11229 df-sumdc 11304 df-ef 11598 |
This theorem is referenced by: efi4p 11667 |
Copyright terms: Public domain | W3C validator |