ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef4p GIF version

Theorem ef4p 11862
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypothesis
Ref Expression
ef4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef4p (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef4p
StepHypRef Expression
1 ef4p.1 . 2 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
2 df-4 9054 . 2 4 = (3 + 1)
3 3nn0 9270 . 2 3 ∈ ℕ0
4 id 19 . 2 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
5 ax-1cn 7975 . . . 4 1 ∈ ℂ
6 addcl 8007 . . . 4 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ)
75, 6mpan 424 . . 3 (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ)
8 sqcl 10695 . . . 4 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
98halfcld 9239 . . 3 (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ)
107, 9addcld 8049 . 2 (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / 2)) ∈ ℂ)
11 df-3 9053 . . 3 3 = (2 + 1)
12 2nn0 9269 . . 3 2 ∈ ℕ0
13 df-2 9052 . . . 4 2 = (1 + 1)
14 1nn0 9268 . . . 4 1 ∈ ℕ0
155a1i 9 . . . 4 (𝐴 ∈ ℂ → 1 ∈ ℂ)
16 1e0p1 9501 . . . . 5 1 = (0 + 1)
17 0nn0 9267 . . . . 5 0 ∈ ℕ0
18 0cnd 8022 . . . . 5 (𝐴 ∈ ℂ → 0 ∈ ℂ)
191efval2 11833 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
20 nn0uz 9639 . . . . . . . . 9 0 = (ℤ‘0)
2120sumeq1i 11531 . . . . . . . 8 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)
2219, 21eqtr2di 2246 . . . . . . 7 (𝐴 ∈ ℂ → Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘) = (exp‘𝐴))
2322oveq2d 5939 . . . . . 6 (𝐴 ∈ ℂ → (0 + Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)) = (0 + (exp‘𝐴)))
24 efcl 11832 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2524addlidd 8179 . . . . . 6 (𝐴 ∈ ℂ → (0 + (exp‘𝐴)) = (exp‘𝐴))
2623, 25eqtr2d 2230 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = (0 + Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)))
27 eft0val 11861 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
2827oveq2d 5939 . . . . . 6 (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = (0 + 1))
29 0p1e1 9107 . . . . . 6 (0 + 1) = 1
3028, 29eqtrdi 2245 . . . . 5 (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = 1)
311, 16, 17, 4, 18, 26, 30efsep 11859 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = (1 + Σ𝑘 ∈ (ℤ‘1)(𝐹𝑘)))
32 exp1 10640 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
33 fac1 10824 . . . . . . . 8 (!‘1) = 1
3433a1i 9 . . . . . . 7 (𝐴 ∈ ℂ → (!‘1) = 1)
3532, 34oveq12d 5941 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = (𝐴 / 1))
36 div1 8733 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
3735, 36eqtrd 2229 . . . . 5 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
3837oveq2d 5939 . . . 4 (𝐴 ∈ ℂ → (1 + ((𝐴↑1) / (!‘1))) = (1 + 𝐴))
391, 13, 14, 4, 15, 31, 38efsep 11859 . . 3 (𝐴 ∈ ℂ → (exp‘𝐴) = ((1 + 𝐴) + Σ𝑘 ∈ (ℤ‘2)(𝐹𝑘)))
40 fac2 10826 . . . . . 6 (!‘2) = 2
4140oveq2i 5934 . . . . 5 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
4241oveq2i 5934 . . . 4 ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2))
4342a1i 9 . . 3 (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
441, 11, 12, 4, 7, 39, 43efsep 11859 . 2 (𝐴 ∈ ℂ → (exp‘𝐴) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + Σ𝑘 ∈ (ℤ‘3)(𝐹𝑘)))
45 fac3 10827 . . . . 5 (!‘3) = 6
4645oveq2i 5934 . . . 4 ((𝐴↑3) / (!‘3)) = ((𝐴↑3) / 6)
4746oveq2i 5934 . . 3 (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6))
4847a1i 9 . 2 (𝐴 ∈ ℂ → (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)))
491, 2, 3, 4, 10, 44, 48efsep 11859 1 (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cmpt 4095  cfv 5259  (class class class)co 5923  cc 7880  0cc0 7882  1c1 7883   + caddc 7885   / cdiv 8702  2c2 9044  3c3 9045  4c4 9046  6c6 9048  0cn0 9252  cuz 9604  cexp 10633  !cfa 10820  Σcsu 11521  expce 11810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-irdg 6430  df-frec 6451  df-1o 6476  df-oadd 6480  df-er 6594  df-en 6802  df-dom 6803  df-fin 6804  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-5 9055  df-6 9056  df-n0 9253  df-z 9330  df-uz 9605  df-q 9697  df-rp 9732  df-ico 9972  df-fz 10087  df-fzo 10221  df-seqfrec 10543  df-exp 10634  df-fac 10821  df-ihash 10871  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167  df-clim 11447  df-sumdc 11522  df-ef 11816
This theorem is referenced by:  efi4p  11885
  Copyright terms: Public domain W3C validator