![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ef4p | GIF version |
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
Ref | Expression |
---|---|
ef4p.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
Ref | Expression |
---|---|
ef4p | ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ef4p.1 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
2 | df-4 8546 | . 2 ⊢ 4 = (3 + 1) | |
3 | 3nn0 8754 | . 2 ⊢ 3 ∈ ℕ0 | |
4 | id 19 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
5 | ax-1cn 7501 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | addcl 7530 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ) | |
7 | 5, 6 | mpan 416 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ) |
8 | sqcl 10079 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
9 | 8 | halfcld 8723 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ) |
10 | 7, 9 | addcld 7570 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / 2)) ∈ ℂ) |
11 | df-3 8545 | . . 3 ⊢ 3 = (2 + 1) | |
12 | 2nn0 8753 | . . 3 ⊢ 2 ∈ ℕ0 | |
13 | df-2 8544 | . . . 4 ⊢ 2 = (1 + 1) | |
14 | 1nn0 8752 | . . . 4 ⊢ 1 ∈ ℕ0 | |
15 | 5 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) |
16 | 1e0p1 8981 | . . . . 5 ⊢ 1 = (0 + 1) | |
17 | 0nn0 8751 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
18 | 0cnd 7544 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
19 | 1 | efval2 11018 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
20 | nn0uz 9116 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
21 | 20 | sumeq1i 10815 | . . . . . . . 8 ⊢ Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) |
22 | 19, 21 | syl6req 2138 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) = (exp‘𝐴)) |
23 | 22 | oveq2d 5684 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘)) = (0 + (exp‘𝐴))) |
24 | efcl 11017 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
25 | 24 | addid2d 7695 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + (exp‘𝐴)) = (exp‘𝐴)) |
26 | 23, 25 | eqtr2d 2122 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘))) |
27 | eft0val 11046 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
28 | 27 | oveq2d 5684 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = (0 + 1)) |
29 | 0p1e1 8599 | . . . . . 6 ⊢ (0 + 1) = 1 | |
30 | 28, 29 | syl6eq 2137 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = 1) |
31 | 1, 16, 17, 4, 18, 26, 30 | efsep 11044 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (1 + Σ𝑘 ∈ (ℤ≥‘1)(𝐹‘𝑘))) |
32 | exp1 10024 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
33 | fac1 10200 | . . . . . . . 8 ⊢ (!‘1) = 1 | |
34 | 33 | a1i 9 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (!‘1) = 1) |
35 | 32, 34 | oveq12d 5686 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = (𝐴 / 1)) |
36 | div1 8233 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
37 | 35, 36 | eqtrd 2121 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
38 | 37 | oveq2d 5684 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 + ((𝐴↑1) / (!‘1))) = (1 + 𝐴)) |
39 | 1, 13, 14, 4, 15, 31, 38 | efsep 11044 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((1 + 𝐴) + Σ𝑘 ∈ (ℤ≥‘2)(𝐹‘𝑘))) |
40 | fac2 10202 | . . . . . 6 ⊢ (!‘2) = 2 | |
41 | 40 | oveq2i 5679 | . . . . 5 ⊢ ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2) |
42 | 41 | oveq2i 5679 | . . . 4 ⊢ ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2)) |
43 | 42 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2))) |
44 | 1, 11, 12, 4, 7, 39, 43 | efsep 11044 | . 2 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + Σ𝑘 ∈ (ℤ≥‘3)(𝐹‘𝑘))) |
45 | fac3 10203 | . . . . 5 ⊢ (!‘3) = 6 | |
46 | 45 | oveq2i 5679 | . . . 4 ⊢ ((𝐴↑3) / (!‘3)) = ((𝐴↑3) / 6) |
47 | 46 | oveq2i 5679 | . . 3 ⊢ (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) |
48 | 47 | a1i 9 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6))) |
49 | 1, 2, 3, 4, 10, 44, 48 | efsep 11044 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 ↦ cmpt 3907 ‘cfv 5030 (class class class)co 5668 ℂcc 7411 0cc0 7413 1c1 7414 + caddc 7416 / cdiv 8202 2c2 8536 3c3 8537 4c4 8538 6c6 8540 ℕ0cn0 8736 ℤ≥cuz 9082 ↑cexp 10017 !cfa 10196 Σcsu 10805 expce 10995 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3962 ax-sep 3965 ax-nul 3973 ax-pow 4017 ax-pr 4047 ax-un 4271 ax-setind 4368 ax-iinf 4418 ax-cnex 7499 ax-resscn 7500 ax-1cn 7501 ax-1re 7502 ax-icn 7503 ax-addcl 7504 ax-addrcl 7505 ax-mulcl 7506 ax-mulrcl 7507 ax-addcom 7508 ax-mulcom 7509 ax-addass 7510 ax-mulass 7511 ax-distr 7512 ax-i2m1 7513 ax-0lt1 7514 ax-1rid 7515 ax-0id 7516 ax-rnegex 7517 ax-precex 7518 ax-cnre 7519 ax-pre-ltirr 7520 ax-pre-ltwlin 7521 ax-pre-lttrn 7522 ax-pre-apti 7523 ax-pre-ltadd 7524 ax-pre-mulgt0 7525 ax-pre-mulext 7526 ax-arch 7527 ax-caucvg 7528 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2624 df-sbc 2844 df-csb 2937 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-nul 3290 df-if 3400 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-int 3697 df-iun 3740 df-br 3854 df-opab 3908 df-mpt 3909 df-tr 3945 df-id 4131 df-po 4134 df-iso 4135 df-iord 4204 df-on 4206 df-ilim 4207 df-suc 4209 df-iom 4421 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-rn 4465 df-res 4466 df-ima 4467 df-iota 4995 df-fun 5032 df-fn 5033 df-f 5034 df-f1 5035 df-fo 5036 df-f1o 5037 df-fv 5038 df-isom 5039 df-riota 5624 df-ov 5671 df-oprab 5672 df-mpt2 5673 df-1st 5927 df-2nd 5928 df-recs 6086 df-irdg 6151 df-frec 6172 df-1o 6197 df-oadd 6201 df-er 6308 df-en 6514 df-dom 6515 df-fin 6516 df-pnf 7587 df-mnf 7588 df-xr 7589 df-ltxr 7590 df-le 7591 df-sub 7718 df-neg 7719 df-reap 8115 df-ap 8122 df-div 8203 df-inn 8486 df-2 8544 df-3 8545 df-4 8546 df-5 8547 df-6 8548 df-n0 8737 df-z 8814 df-uz 9083 df-q 9168 df-rp 9198 df-ico 9375 df-fz 9488 df-fzo 9617 df-iseq 9916 df-seq3 9917 df-exp 10018 df-fac 10197 df-ihash 10247 df-cj 10339 df-re 10340 df-im 10341 df-rsqrt 10494 df-abs 10495 df-clim 10730 df-isum 10806 df-ef 11001 |
This theorem is referenced by: efi4p 11071 |
Copyright terms: Public domain | W3C validator |