ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcp1nk GIF version

Theorem bcp1nk 10871
Description: The proportion of one binomial coefficient to another with 𝑁 and 𝐾 increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
bcp1nk (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))

Proof of Theorem bcp1nk
StepHypRef Expression
1 elfzel1 10116 . . . . . 6 (𝐾 ∈ (0...𝑁) → 0 ∈ ℤ)
2 elfzel2 10115 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 10117 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
4 1zzd 9370 . . . . . 6 (𝐾 ∈ (0...𝑁) → 1 ∈ ℤ)
5 fzaddel 10151 . . . . . 6 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1))))
61, 2, 3, 4, 5syl22anc 1250 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1))))
76ibi 176 . . . 4 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1)))
8 1e0p1 9515 . . . . 5 1 = (0 + 1)
98oveq1i 5935 . . . 4 (1...(𝑁 + 1)) = ((0 + 1)...(𝑁 + 1))
107, 9eleqtrrdi 2290 . . 3 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ (1...(𝑁 + 1)))
11 bcm1k 10869 . . 3 ((𝐾 + 1) ∈ (1...(𝑁 + 1)) → ((𝑁 + 1)C(𝐾 + 1)) = (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))))
1210, 11syl 14 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))))
133zcnd 9466 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
14 ax-1cn 7989 . . . . . . 7 1 ∈ ℂ
15 pncan 8249 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
1613, 14, 15sylancl 413 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝐾 + 1) − 1) = 𝐾)
1716oveq2d 5941 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C((𝐾 + 1) − 1)) = ((𝑁 + 1)C𝐾))
18 bcp1n 10870 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
1917, 18eqtrd 2229 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C((𝐾 + 1) − 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
2016oveq2d 5941 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − ((𝐾 + 1) − 1)) = ((𝑁 + 1) − 𝐾))
2120oveq1d 5940 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1)) = (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))
2219, 21oveq12d 5943 . . 3 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))) = (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))))
23 bcrpcl 10862 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
2423rpcnd 9790 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℂ)
252peano2zd 9468 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℤ)
2625zred 9465 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℝ)
273zred 9465 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
282zred 9465 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
29 elfzle2 10120 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
3028ltp1d 8974 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 < (𝑁 + 1))
3127, 28, 26, 29, 30lelttrd 8168 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 < (𝑁 + 1))
32 znnsub 9394 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 < (𝑁 + 1) ↔ ((𝑁 + 1) − 𝐾) ∈ ℕ))
333, 25, 32syl2anc 411 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝐾 < (𝑁 + 1) ↔ ((𝑁 + 1) − 𝐾) ∈ ℕ))
3431, 33mpbid 147 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
3526, 34nndivred 9057 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) ∈ ℝ)
3635recnd 8072 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) ∈ ℂ)
3734nnred 9020 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℝ)
38 elfznn0 10206 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
39 nn0p1nn 9305 . . . . . . . 8 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
4038, 39syl 14 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℕ)
4137, 40nndivred 9057 . . . . . 6 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) / (𝐾 + 1)) ∈ ℝ)
4241recnd 8072 . . . . 5 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) / (𝐾 + 1)) ∈ ℂ)
4324, 36, 42mulassd 8067 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁C𝐾) · (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))))
4425zcnd 9466 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℂ)
4534nncnd 9021 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
4640nncnd 9021 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℂ)
4734nnap0d 9053 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) # 0)
4840nnap0d 9053 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) # 0)
4944, 45, 46, 47, 48dmdcanap2d 8865 . . . . 5 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁 + 1) / (𝐾 + 1)))
5049oveq2d 5941 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑁C𝐾) · (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5143, 50eqtrd 2229 . . 3 (𝐾 ∈ (0...𝑁) → (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5222, 51eqtrd 2229 . 2 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5312, 52eqtrd 2229 1 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167   class class class wbr 4034  (class class class)co 5925  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cmin 8214   / cdiv 8716  cn 9007  0cn0 9266  cz 9343  ...cfz 10100  Ccbc 10856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-seqfrec 10557  df-fac 10835  df-bc 10857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator