ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcp1nk GIF version

Theorem bcp1nk 10675
Description: The proportion of one binomial coefficient to another with 𝑁 and 𝐾 increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
bcp1nk (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))

Proof of Theorem bcp1nk
StepHypRef Expression
1 elfzel1 9959 . . . . . 6 (𝐾 ∈ (0...𝑁) → 0 ∈ ℤ)
2 elfzel2 9958 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 9960 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
4 1zzd 9218 . . . . . 6 (𝐾 ∈ (0...𝑁) → 1 ∈ ℤ)
5 fzaddel 9994 . . . . . 6 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1))))
61, 2, 3, 4, 5syl22anc 1229 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1))))
76ibi 175 . . . 4 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1)))
8 1e0p1 9363 . . . . 5 1 = (0 + 1)
98oveq1i 5852 . . . 4 (1...(𝑁 + 1)) = ((0 + 1)...(𝑁 + 1))
107, 9eleqtrrdi 2260 . . 3 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ (1...(𝑁 + 1)))
11 bcm1k 10673 . . 3 ((𝐾 + 1) ∈ (1...(𝑁 + 1)) → ((𝑁 + 1)C(𝐾 + 1)) = (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))))
1210, 11syl 14 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))))
133zcnd 9314 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
14 ax-1cn 7846 . . . . . . 7 1 ∈ ℂ
15 pncan 8104 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
1613, 14, 15sylancl 410 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝐾 + 1) − 1) = 𝐾)
1716oveq2d 5858 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C((𝐾 + 1) − 1)) = ((𝑁 + 1)C𝐾))
18 bcp1n 10674 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
1917, 18eqtrd 2198 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C((𝐾 + 1) − 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
2016oveq2d 5858 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − ((𝐾 + 1) − 1)) = ((𝑁 + 1) − 𝐾))
2120oveq1d 5857 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1)) = (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))
2219, 21oveq12d 5860 . . 3 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))) = (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))))
23 bcrpcl 10666 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
2423rpcnd 9634 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℂ)
252peano2zd 9316 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℤ)
2625zred 9313 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℝ)
273zred 9313 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
282zred 9313 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
29 elfzle2 9963 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
3028ltp1d 8825 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 < (𝑁 + 1))
3127, 28, 26, 29, 30lelttrd 8023 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 < (𝑁 + 1))
32 znnsub 9242 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 < (𝑁 + 1) ↔ ((𝑁 + 1) − 𝐾) ∈ ℕ))
333, 25, 32syl2anc 409 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝐾 < (𝑁 + 1) ↔ ((𝑁 + 1) − 𝐾) ∈ ℕ))
3431, 33mpbid 146 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
3526, 34nndivred 8907 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) ∈ ℝ)
3635recnd 7927 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) ∈ ℂ)
3734nnred 8870 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℝ)
38 elfznn0 10049 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
39 nn0p1nn 9153 . . . . . . . 8 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
4038, 39syl 14 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℕ)
4137, 40nndivred 8907 . . . . . 6 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) / (𝐾 + 1)) ∈ ℝ)
4241recnd 7927 . . . . 5 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) / (𝐾 + 1)) ∈ ℂ)
4324, 36, 42mulassd 7922 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁C𝐾) · (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))))
4425zcnd 9314 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℂ)
4534nncnd 8871 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
4640nncnd 8871 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℂ)
4734nnap0d 8903 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) # 0)
4840nnap0d 8903 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) # 0)
4944, 45, 46, 47, 48dmdcanap2d 8717 . . . . 5 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁 + 1) / (𝐾 + 1)))
5049oveq2d 5858 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑁C𝐾) · (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5143, 50eqtrd 2198 . . 3 (𝐾 ∈ (0...𝑁) → (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5222, 51eqtrd 2198 . 2 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5312, 52eqtrd 2198 1 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wcel 2136   class class class wbr 3982  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cmin 8069   / cdiv 8568  cn 8857  0cn0 9114  cz 9191  ...cfz 9944  Ccbc 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-seqfrec 10381  df-fac 10639  df-bc 10661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator