Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dec10p | GIF version |
Description: Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
dec10p | ⊢ (;10 + 𝐴) = ;1𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 9321 | . 2 ⊢ ;1𝐴 = ((;10 · 1) + 𝐴) | |
2 | 10nn 9333 | . . . . 5 ⊢ ;10 ∈ ℕ | |
3 | 2 | nncni 8863 | . . . 4 ⊢ ;10 ∈ ℂ |
4 | 3 | mulid1i 7897 | . . 3 ⊢ (;10 · 1) = ;10 |
5 | 4 | oveq1i 5851 | . 2 ⊢ ((;10 · 1) + 𝐴) = (;10 + 𝐴) |
6 | 1, 5 | eqtr2i 2187 | 1 ⊢ (;10 + 𝐴) = ;1𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5841 0cc0 7749 1c1 7750 + caddc 7752 · cmul 7754 ;cdc 9318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-1rid 7856 ax-0id 7857 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-5 8915 df-6 8916 df-7 8917 df-8 8918 df-9 8919 df-dec 9319 |
This theorem is referenced by: 5t3e15 9418 |
Copyright terms: Public domain | W3C validator |