| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dec10p | GIF version | ||
| Description: Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| dec10p | ⊢ (;10 + 𝐴) = ;1𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 9577 | . 2 ⊢ ;1𝐴 = ((;10 · 1) + 𝐴) | |
| 2 | 10nn 9589 | . . . . 5 ⊢ ;10 ∈ ℕ | |
| 3 | 2 | nncni 9116 | . . . 4 ⊢ ;10 ∈ ℂ |
| 4 | 3 | mulridi 8144 | . . 3 ⊢ (;10 · 1) = ;10 |
| 5 | 4 | oveq1i 6010 | . 2 ⊢ ((;10 · 1) + 𝐴) = (;10 + 𝐴) |
| 6 | 1, 5 | eqtr2i 2251 | 1 ⊢ (;10 + 𝐴) = ;1𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 · cmul 8000 ;cdc 9574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-0id 8103 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-dec 9575 |
| This theorem is referenced by: 5t3e15 9674 |
| Copyright terms: Public domain | W3C validator |