HomeHome Intuitionistic Logic Explorer
Theorem List (p. 95 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9401-9500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnlem1lt 9401 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
 
Theoremnnltlem1 9402 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
 
Theoremnnm1ge0 9403 A positive integer decreased by 1 is greater than or equal to 0. (Contributed by AV, 30-Oct-2018.)
(𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1))
 
Theoremnn0ge0div 9404 Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿))
 
Theoremzdiv 9405* Two ways to express "𝑀 divides 𝑁. (Contributed by NM, 3-Oct-2008.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
 
Theoremzdivadd 9406 Property of divisibility: if 𝐷 divides 𝐴 and 𝐵 then it divides 𝐴 + 𝐵. (Contributed by NM, 3-Oct-2008.)
(((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ)
 
Theoremzdivmul 9407 Property of divisibility: if 𝐷 divides 𝐴 then it divides 𝐵 · 𝐴. (Contributed by NM, 3-Oct-2008.)
(((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ)
 
Theoremzextle 9408* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)
 
Theoremzextlt 9409* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀𝑘 < 𝑁)) → 𝑀 = 𝑁)
 
Theoremrecnz 9410 The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ)
 
Theorembtwnnz 9411 A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ)
 
Theoremgtndiv 9412 A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ)
 
Theoremhalfnz 9413 One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
¬ (1 / 2) ∈ ℤ
 
Theorem3halfnz 9414 Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
¬ (3 / 2) ∈ ℤ
 
Theoremsuprzclex 9415* The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℤ)       (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
 
Theoremprime 9416* Two ways to express "𝐴 is a prime number (or 1)". (Contributed by NM, 4-May-2005.)
(𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
 
Theoremmsqznn 9417 The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.)
((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ)
 
Theoremzneo 9418 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1))
 
Theoremnneoor 9419 A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
 
Theoremnneo 9420 A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
 
Theoremnneoi 9421 A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.)
𝑁 ∈ ℕ       ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ)
 
Theoremzeo 9422 An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
(𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
 
Theoremzeo2 9423 An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
(𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))
 
Theorempeano2uz2 9424* Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})
 
Theorempeano5uzti 9425* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
(𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
 
Theorempeano5uzi 9426* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
𝑁 ∈ ℤ       ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴)
 
Theoremdfuzi 9427* An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 8984 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
𝑁 ∈ ℤ       {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
 
Theoremuzind 9428* Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
 
Theoremuzind2 9429* Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.)
(𝑗 = (𝑀 + 1) → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏)
 
Theoremuzind3 9430* Induction on the upper integers that start at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑚 → (𝜑𝜒))    &   (𝑗 = (𝑚 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘}) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘}) → 𝜏)
 
Theoremnn0ind 9431* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕ0 → (𝜒𝜃))       (𝐴 ∈ ℕ0𝜏)
 
Theoremfzind 9432* Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝑥 = 𝑀 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐾 → (𝜑𝜏))    &   ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)    &   (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))       (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
 
Theoremfnn0ind 9433* Induction on the integers from 0 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐾 → (𝜑𝜏))    &   (𝑁 ∈ ℕ0𝜓)    &   ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))       ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
 
Theoremnn0ind-raph 9434* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕ0 → (𝜒𝜃))       (𝐴 ∈ ℕ0𝜏)
 
Theoremzindd 9435* Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜏))    &   (𝑥 = -𝑦 → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜂))    &   (𝜁𝜓)    &   (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))    &   (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))       (𝜁 → (𝐴 ∈ ℤ → 𝜂))
 
Theorembtwnz 9436* Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
(𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦))
 
Theoremnn0zd 9437 A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℤ)
 
Theoremnnzd 9438 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℤ)
 
Theoremzred 9439 An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑𝐴 ∈ ℝ)
 
Theoremzcnd 9440 An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑𝐴 ∈ ℂ)
 
Theoremznegcld 9441 Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑 → -𝐴 ∈ ℤ)
 
Theorempeano2zd 9442 Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑 → (𝐴 + 1) ∈ ℤ)
 
Theoremzaddcld 9443 Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
 
Theoremzsubcld 9444 Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴𝐵) ∈ ℤ)
 
Theoremzmulcld 9445 Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴 · 𝐵) ∈ ℤ)
 
Theoremzadd2cl 9446 Increasing an integer by 2 results in an integer. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
(𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ)
 
Theorembtwnapz 9447 A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵 < (𝐴 + 1))       (𝜑𝐵 # 𝐶)
 
4.4.10  Decimal arithmetic
 
Syntaxcdc 9448 Constant used for decimal constructor.
class 𝐴𝐵
 
Definitiondf-dec 9449 Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example, (1000 + 2000) = 3000 1kp2ke3k 15216. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 1-Aug-2021.)
𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
 
Theorem9p1e10 9450 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
(9 + 1) = 10
 
Theoremdfdec10 9451 Version of the definition of the "decimal constructor" using 10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.)
𝐴𝐵 = ((10 · 𝐴) + 𝐵)
 
Theoremdeceq1 9452 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
 
Theoremdeceq2 9453 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)
 
Theoremdeceq1i 9454 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵       𝐴𝐶 = 𝐵𝐶
 
Theoremdeceq2i 9455 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵       𝐶𝐴 = 𝐶𝐵
 
Theoremdeceq12i 9456 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵    &   𝐶 = 𝐷       𝐴𝐶 = 𝐵𝐷
 
Theoremnumnncl 9457 Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ       ((𝑇 · 𝐴) + 𝐵) ∈ ℕ
 
Theoremnum0u 9458 Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0       (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0)
 
Theoremnum0h 9459 Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0       𝐴 = ((𝑇 · 0) + 𝐴)
 
Theoremnumcl 9460 Closure for a decimal integer (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
 
Theoremnumsuc 9461 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   (𝐵 + 1) = 𝐶    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)       (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶)
 
Theoremdeccl 9462 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       𝐴𝐵 ∈ ℕ0
 
Theorem10nn 9463 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.)
10 ∈ ℕ
 
Theorem10pos 9464 The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.)
0 < 10
 
Theorem10nn0 9465 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
10 ∈ ℕ0
 
Theorem10re 9466 The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.)
10 ∈ ℝ
 
Theoremdecnncl 9467 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ       𝐴𝐵 ∈ ℕ
 
Theoremdec0u 9468 Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0       (10 · 𝐴) = 𝐴0
 
Theoremdec0h 9469 Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0       𝐴 = 0𝐴
 
Theoremnumnncl2 9470 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ       ((𝑇 · 𝐴) + 0) ∈ ℕ
 
Theoremdecnncl2 9471 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ       𝐴0 ∈ ℕ
 
Theoremnumlt 9472 Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ    &   𝐵 < 𝐶       ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶)
 
Theoremnumltc 9473 Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 < 𝑇    &   𝐴 < 𝐵       ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)
 
Theoremle9lt10 9474 A "decimal digit" (i.e. a nonnegative integer less than or equal to 9) is less then 10. (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐴 ≤ 9       𝐴 < 10
 
Theoremdeclt 9475 Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ    &   𝐵 < 𝐶       𝐴𝐵 < 𝐴𝐶
 
Theoremdecltc 9476 Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 < 10    &   𝐴 < 𝐵       𝐴𝐶 < 𝐵𝐷
 
Theoremdeclth 9477 Comparing two decimal integers (unequal higher places). (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 ≤ 9    &   𝐴 < 𝐵       𝐴𝐶 < 𝐵𝐷
 
Theoremdecsuc 9478 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   (𝐵 + 1) = 𝐶    &   𝑁 = 𝐴𝐵       (𝑁 + 1) = 𝐴𝐶
 
Theorem3declth 9479 Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐴 < 𝐵    &   𝐶 ≤ 9    &   𝐸 ≤ 9       𝐴𝐶𝐸 < 𝐵𝐷𝐹
 
Theorem3decltc 9480 Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 15-Jun-2021.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐴 < 𝐵    &   𝐶 < 10    &   𝐸 < 10       𝐴𝐶𝐸 < 𝐵𝐷𝐹
 
Theoremdecle 9481 Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐵𝐶       𝐴𝐵𝐴𝐶
 
Theoremdecleh 9482 Comparing two decimal integers (unequal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 ≤ 9    &   𝐴 < 𝐵       𝐴𝐶𝐵𝐷
 
Theoremdeclei 9483 Comparing a digit to a decimal integer. (Contributed by AV, 17-Aug-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 ≤ 9       𝐶𝐴𝐵
 
Theoremnumlti 9484 Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 < 𝑇       𝐶 < ((𝑇 · 𝐴) + 𝐵)
 
Theoremdeclti 9485 Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 < 10       𝐶 < 𝐴𝐵
 
Theoremdecltdi 9486 Comparing a digit to a decimal integer. (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 ≤ 9       𝐶 < 𝐴𝐵
 
Theoremnumsucc 9487 The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑌 ∈ ℕ0    &   𝑇 = (𝑌 + 1)    &   𝐴 ∈ ℕ0    &   (𝐴 + 1) = 𝐵    &   𝑁 = ((𝑇 · 𝐴) + 𝑌)       (𝑁 + 1) = ((𝑇 · 𝐵) + 0)
 
Theoremdecsucc 9488 The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   (𝐴 + 1) = 𝐵    &   𝑁 = 𝐴9       (𝑁 + 1) = 𝐵0
 
Theorem1e0p1 9489 The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.)
1 = (0 + 1)
 
Theoremdec10p 9490 Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(10 + 𝐴) = 1𝐴
 
Theoremnumma 9491 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐶) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnummac 9492 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)       ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnumma2c 9493 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸    &   ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)       ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnumadd 9494 Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   (𝐴 + 𝐶) = 𝐸    &   (𝐵 + 𝐷) = 𝐹       (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnumaddc 9495 Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝐹 ∈ ℕ0    &   ((𝐴 + 𝐶) + 1) = 𝐸    &   (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)       (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnummul1c 9496 The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐸) = 𝐶    &   (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)       (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)
 
Theoremnummul2c 9497 The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝑃 · 𝐴) + 𝐸) = 𝐶    &   (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷)       (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷)
 
Theoremdecma 9498 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐶) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
Theoremdecmac 9499 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐺𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
Theoremdecma2c 9500 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplier 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸    &   ((𝑃 · 𝐵) + 𝐷) = 𝐺𝐹       ((𝑃 · 𝑀) + 𝑁) = 𝐸𝐹
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >