HomeHome Intuitionistic Logic Explorer
Theorem List (p. 95 of 153)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9401-9500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
4.4.10  Decimal arithmetic
 
Syntaxcdc 9401 Constant used for decimal constructor.
class 𝐴𝐵
 
Definitiondf-dec 9402 Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example, (1000 + 2000) = 3000 1kp2ke3k 14859. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 1-Aug-2021.)
𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
 
Theorem9p1e10 9403 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
(9 + 1) = 10
 
Theoremdfdec10 9404 Version of the definition of the "decimal constructor" using 10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.)
𝐴𝐵 = ((10 · 𝐴) + 𝐵)
 
Theoremdeceq1 9405 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
 
Theoremdeceq2 9406 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)
 
Theoremdeceq1i 9407 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵       𝐴𝐶 = 𝐵𝐶
 
Theoremdeceq2i 9408 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵       𝐶𝐴 = 𝐶𝐵
 
Theoremdeceq12i 9409 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵    &   𝐶 = 𝐷       𝐴𝐶 = 𝐵𝐷
 
Theoremnumnncl 9410 Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ       ((𝑇 · 𝐴) + 𝐵) ∈ ℕ
 
Theoremnum0u 9411 Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0       (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0)
 
Theoremnum0h 9412 Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0       𝐴 = ((𝑇 · 0) + 𝐴)
 
Theoremnumcl 9413 Closure for a decimal integer (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
 
Theoremnumsuc 9414 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   (𝐵 + 1) = 𝐶    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)       (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶)
 
Theoremdeccl 9415 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       𝐴𝐵 ∈ ℕ0
 
Theorem10nn 9416 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.)
10 ∈ ℕ
 
Theorem10pos 9417 The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.)
0 < 10
 
Theorem10nn0 9418 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
10 ∈ ℕ0
 
Theorem10re 9419 The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.)
10 ∈ ℝ
 
Theoremdecnncl 9420 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ       𝐴𝐵 ∈ ℕ
 
Theoremdec0u 9421 Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0       (10 · 𝐴) = 𝐴0
 
Theoremdec0h 9422 Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0       𝐴 = 0𝐴
 
Theoremnumnncl2 9423 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ       ((𝑇 · 𝐴) + 0) ∈ ℕ
 
Theoremdecnncl2 9424 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ       𝐴0 ∈ ℕ
 
Theoremnumlt 9425 Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ    &   𝐵 < 𝐶       ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶)
 
Theoremnumltc 9426 Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 < 𝑇    &   𝐴 < 𝐵       ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)
 
Theoremle9lt10 9427 A "decimal digit" (i.e. a nonnegative integer less than or equal to 9) is less then 10. (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐴 ≤ 9       𝐴 < 10
 
Theoremdeclt 9428 Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ    &   𝐵 < 𝐶       𝐴𝐵 < 𝐴𝐶
 
Theoremdecltc 9429 Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 < 10    &   𝐴 < 𝐵       𝐴𝐶 < 𝐵𝐷
 
Theoremdeclth 9430 Comparing two decimal integers (unequal higher places). (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 ≤ 9    &   𝐴 < 𝐵       𝐴𝐶 < 𝐵𝐷
 
Theoremdecsuc 9431 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   (𝐵 + 1) = 𝐶    &   𝑁 = 𝐴𝐵       (𝑁 + 1) = 𝐴𝐶
 
Theorem3declth 9432 Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐴 < 𝐵    &   𝐶 ≤ 9    &   𝐸 ≤ 9       𝐴𝐶𝐸 < 𝐵𝐷𝐹
 
Theorem3decltc 9433 Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 15-Jun-2021.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐴 < 𝐵    &   𝐶 < 10    &   𝐸 < 10       𝐴𝐶𝐸 < 𝐵𝐷𝐹
 
Theoremdecle 9434 Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐵𝐶       𝐴𝐵𝐴𝐶
 
Theoremdecleh 9435 Comparing two decimal integers (unequal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 ≤ 9    &   𝐴 < 𝐵       𝐴𝐶𝐵𝐷
 
Theoremdeclei 9436 Comparing a digit to a decimal integer. (Contributed by AV, 17-Aug-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 ≤ 9       𝐶𝐴𝐵
 
Theoremnumlti 9437 Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 < 𝑇       𝐶 < ((𝑇 · 𝐴) + 𝐵)
 
Theoremdeclti 9438 Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 < 10       𝐶 < 𝐴𝐵
 
Theoremdecltdi 9439 Comparing a digit to a decimal integer. (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 ≤ 9       𝐶 < 𝐴𝐵
 
Theoremnumsucc 9440 The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑌 ∈ ℕ0    &   𝑇 = (𝑌 + 1)    &   𝐴 ∈ ℕ0    &   (𝐴 + 1) = 𝐵    &   𝑁 = ((𝑇 · 𝐴) + 𝑌)       (𝑁 + 1) = ((𝑇 · 𝐵) + 0)
 
Theoremdecsucc 9441 The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   (𝐴 + 1) = 𝐵    &   𝑁 = 𝐴9       (𝑁 + 1) = 𝐵0
 
Theorem1e0p1 9442 The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.)
1 = (0 + 1)
 
Theoremdec10p 9443 Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(10 + 𝐴) = 1𝐴
 
Theoremnumma 9444 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐶) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnummac 9445 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)       ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnumma2c 9446 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸    &   ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)       ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnumadd 9447 Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   (𝐴 + 𝐶) = 𝐸    &   (𝐵 + 𝐷) = 𝐹       (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnumaddc 9448 Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝐹 ∈ ℕ0    &   ((𝐴 + 𝐶) + 1) = 𝐸    &   (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)       (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnummul1c 9449 The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐸) = 𝐶    &   (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)       (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)
 
Theoremnummul2c 9450 The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝑃 · 𝐴) + 𝐸) = 𝐶    &   (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷)       (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷)
 
Theoremdecma 9451 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐶) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
Theoremdecmac 9452 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐺𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
Theoremdecma2c 9453 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplier 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸    &   ((𝑃 · 𝐵) + 𝐷) = 𝐺𝐹       ((𝑃 · 𝑀) + 𝑁) = 𝐸𝐹
 
Theoremdecadd 9454 Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   (𝐴 + 𝐶) = 𝐸    &   (𝐵 + 𝐷) = 𝐹       (𝑀 + 𝑁) = 𝐸𝐹
 
Theoremdecaddc 9455 Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   ((𝐴 + 𝐶) + 1) = 𝐸    &   𝐹 ∈ ℕ0    &   (𝐵 + 𝐷) = 1𝐹       (𝑀 + 𝑁) = 𝐸𝐹
 
Theoremdecaddc2 9456 Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   ((𝐴 + 𝐶) + 1) = 𝐸    &   (𝐵 + 𝐷) = 10       (𝑀 + 𝑁) = 𝐸0
 
Theoremdecrmanc 9457 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑃 ∈ ℕ0    &   (𝐴 · 𝑃) = 𝐸    &   ((𝐵 · 𝑃) + 𝑁) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
Theoremdecrmac 9458 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐺) = 𝐸    &   ((𝐵 · 𝑃) + 𝑁) = 𝐺𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
Theoremdecaddm10 9459 The sum of two multiples of 10 is a multiple of 10. (Contributed by AV, 30-Jul-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       (𝐴0 + 𝐵0) = (𝐴 + 𝐵)0
 
Theoremdecaddi 9460 Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   (𝐵 + 𝑁) = 𝐶       (𝑀 + 𝑁) = 𝐴𝐶
 
Theoremdecaddci 9461 Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   (𝐴 + 1) = 𝐷    &   𝐶 ∈ ℕ0    &   (𝐵 + 𝑁) = 1𝐶       (𝑀 + 𝑁) = 𝐷𝐶
 
Theoremdecaddci2 9462 Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   (𝐴 + 1) = 𝐷    &   (𝐵 + 𝑁) = 10       (𝑀 + 𝑁) = 𝐷0
 
Theoremdecsubi 9463 Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   (𝐴 + 1) = 𝐷    &   (𝐵𝑁) = 𝐶       (𝑀𝑁) = 𝐴𝐶
 
Theoremdecmul1 9464 The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = 𝐴𝐵    &   𝐷 ∈ ℕ0    &   (𝐴 · 𝑃) = 𝐶    &   (𝐵 · 𝑃) = 𝐷       (𝑁 · 𝑃) = 𝐶𝐷
 
Theoremdecmul1c 9465 The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = 𝐴𝐵    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐸) = 𝐶    &   (𝐵 · 𝑃) = 𝐸𝐷       (𝑁 · 𝑃) = 𝐶𝐷
 
Theoremdecmul2c 9466 The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = 𝐴𝐵    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝑃 · 𝐴) + 𝐸) = 𝐶    &   (𝑃 · 𝐵) = 𝐸𝐷       (𝑃 · 𝑁) = 𝐶𝐷
 
Theoremdecmulnc 9467 The product of a numeral with a number (no carry). (Contributed by AV, 15-Jun-2021.)
𝑁 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       (𝑁 · 𝐴𝐵) = (𝑁 · 𝐴)(𝑁 · 𝐵)
 
Theorem11multnc 9468 The product of 11 (as numeral) with a number (no carry). (Contributed by AV, 15-Jun-2021.)
𝑁 ∈ ℕ0       (𝑁 · 11) = 𝑁𝑁
 
Theoremdecmul10add 9469 A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑀 ∈ ℕ0    &   𝐸 = (𝑀 · 𝐴)    &   𝐹 = (𝑀 · 𝐵)       (𝑀 · 𝐴𝐵) = (𝐸0 + 𝐹)
 
Theorem6p5lem 9470 Lemma for 6p5e11 9473 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   𝐵 = (𝐷 + 1)    &   𝐶 = (𝐸 + 1)    &   (𝐴 + 𝐷) = 1𝐸       (𝐴 + 𝐵) = 1𝐶
 
Theorem5p5e10 9471 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(5 + 5) = 10
 
Theorem6p4e10 9472 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(6 + 4) = 10
 
Theorem6p5e11 9473 6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(6 + 5) = 11
 
Theorem6p6e12 9474 6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(6 + 6) = 12
 
Theorem7p3e10 9475 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(7 + 3) = 10
 
Theorem7p4e11 9476 7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(7 + 4) = 11
 
Theorem7p5e12 9477 7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 + 5) = 12
 
Theorem7p6e13 9478 7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 + 6) = 13
 
Theorem7p7e14 9479 7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 + 7) = 14
 
Theorem8p2e10 9480 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(8 + 2) = 10
 
Theorem8p3e11 9481 8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(8 + 3) = 11
 
Theorem8p4e12 9482 8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 4) = 12
 
Theorem8p5e13 9483 8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 5) = 13
 
Theorem8p6e14 9484 8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 6) = 14
 
Theorem8p7e15 9485 8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 7) = 15
 
Theorem8p8e16 9486 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 8) = 16
 
Theorem9p2e11 9487 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(9 + 2) = 11
 
Theorem9p3e12 9488 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 3) = 12
 
Theorem9p4e13 9489 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 4) = 13
 
Theorem9p5e14 9490 9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 5) = 14
 
Theorem9p6e15 9491 9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 6) = 15
 
Theorem9p7e16 9492 9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 7) = 16
 
Theorem9p8e17 9493 9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 8) = 17
 
Theorem9p9e18 9494 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 9) = 18
 
Theorem10p10e20 9495 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(10 + 10) = 20
 
Theorem10m1e9 9496 10 - 1 = 9. (Contributed by AV, 6-Sep-2021.)
(10 − 1) = 9
 
Theorem4t3lem 9497 Lemma for 4t3e12 9498 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 = (𝐵 + 1)    &   (𝐴 · 𝐵) = 𝐷    &   (𝐷 + 𝐴) = 𝐸       (𝐴 · 𝐶) = 𝐸
 
Theorem4t3e12 9498 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(4 · 3) = 12
 
Theorem4t4e16 9499 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
(4 · 4) = 16
 
Theorem5t2e10 9500 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.)
(5 · 2) = 10
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15216
  Copyright terms: Public domain < Previous  Next >