Theorem List for Intuitionistic Logic Explorer - 9401-9500 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | decaddm10 9401 |
The sum of two multiples of 10 is a multiple of 10. (Contributed by AV,
30-Jul-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ (;𝐴0 + ;𝐵0) = ;(𝐴 + 𝐵)0 |
|
Theorem | decaddi 9402 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐵 + 𝑁) = 𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
|
Theorem | decaddci 9403 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ 𝐶 ∈ ℕ0 & ⊢ (𝐵 + 𝑁) = ;1𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
|
Theorem | decaddci2 9404 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ (𝐵 + 𝑁) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷0 |
|
Theorem | decsubi 9405 |
Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no
underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV,
6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ (𝐵 − 𝑁) = 𝐶 ⇒ ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
|
Theorem | decmul1 9406 |
The product of a numeral with a number (no carry). (Contributed by
AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐶
& ⊢ (𝐵 · 𝑃) = 𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
|
Theorem | decmul1c 9407 |
The product of a numeral with a number (with carry). (Contributed by
Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶
& ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
|
Theorem | decmul2c 9408 |
The product of a numeral with a number (with carry). (Contributed by
Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶
& ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 ⇒ ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 |
|
Theorem | decmulnc 9409 |
The product of a numeral with a number (no carry). (Contributed by AV,
15-Jun-2021.)
|
⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ (𝑁 · ;𝐴𝐵) = ;(𝑁 · 𝐴)(𝑁 · 𝐵) |
|
Theorem | 11multnc 9410 |
The product of 11 (as numeral) with a number (no carry). (Contributed
by AV, 15-Jun-2021.)
|
⊢ 𝑁 ∈
ℕ0 ⇒ ⊢ (𝑁 · ;11) = ;𝑁𝑁 |
|
Theorem | decmul10add 9411 |
A multiplication of a number and a numeral expressed as addition with
first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.)
(Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐸 = (𝑀 · 𝐴)
& ⊢ 𝐹 = (𝑀 · 𝐵) ⇒ ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) |
|
Theorem | 6p5lem 9412 |
Lemma for 6p5e11 9415 and related theorems. (Contributed by Mario
Carneiro, 19-Apr-2015.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐵 = (𝐷 + 1) & ⊢ 𝐶 = (𝐸 + 1) & ⊢ (𝐴 + 𝐷) = ;1𝐸 ⇒ ⊢ (𝐴 + 𝐵) = ;1𝐶 |
|
Theorem | 5p5e10 9413 |
5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
⊢ (5 + 5) = ;10 |
|
Theorem | 6p4e10 9414 |
6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
⊢ (6 + 4) = ;10 |
|
Theorem | 6p5e11 9415 |
6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (6 + 5) = ;11 |
|
Theorem | 6p6e12 9416 |
6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (6 + 6) = ;12 |
|
Theorem | 7p3e10 9417 |
7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
⊢ (7 + 3) = ;10 |
|
Theorem | 7p4e11 9418 |
7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (7 + 4) = ;11 |
|
Theorem | 7p5e12 9419 |
7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 + 5) = ;12 |
|
Theorem | 7p6e13 9420 |
7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 + 6) = ;13 |
|
Theorem | 7p7e14 9421 |
7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 + 7) = ;14 |
|
Theorem | 8p2e10 9422 |
8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
⊢ (8 + 2) = ;10 |
|
Theorem | 8p3e11 9423 |
8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (8 + 3) = ;11 |
|
Theorem | 8p4e12 9424 |
8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 + 4) = ;12 |
|
Theorem | 8p5e13 9425 |
8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 + 5) = ;13 |
|
Theorem | 8p6e14 9426 |
8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 + 6) = ;14 |
|
Theorem | 8p7e15 9427 |
8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 + 7) = ;15 |
|
Theorem | 8p8e16 9428 |
8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 + 8) = ;16 |
|
Theorem | 9p2e11 9429 |
9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (9 + 2) = ;11 |
|
Theorem | 9p3e12 9430 |
9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 3) = ;12 |
|
Theorem | 9p4e13 9431 |
9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 4) = ;13 |
|
Theorem | 9p5e14 9432 |
9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 5) = ;14 |
|
Theorem | 9p6e15 9433 |
9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 6) = ;15 |
|
Theorem | 9p7e16 9434 |
9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 7) = ;16 |
|
Theorem | 9p8e17 9435 |
9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 8) = ;17 |
|
Theorem | 9p9e18 9436 |
9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 9) = ;18 |
|
Theorem | 10p10e20 9437 |
10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (;10 + ;10) = ;20 |
|
Theorem | 10m1e9 9438 |
10 - 1 = 9. (Contributed by AV, 6-Sep-2021.)
|
⊢ (;10 − 1) = 9 |
|
Theorem | 4t3lem 9439 |
Lemma for 4t3e12 9440 and related theorems. (Contributed by Mario
Carneiro, 19-Apr-2015.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 = (𝐵 + 1) & ⊢ (𝐴 · 𝐵) = 𝐷
& ⊢ (𝐷 + 𝐴) = 𝐸 ⇒ ⊢ (𝐴 · 𝐶) = 𝐸 |
|
Theorem | 4t3e12 9440 |
4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (4 · 3) = ;12 |
|
Theorem | 4t4e16 9441 |
4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (4 · 4) = ;16 |
|
Theorem | 5t2e10 9442 |
5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV,
4-Sep-2021.)
|
⊢ (5 · 2) = ;10 |
|
Theorem | 5t3e15 9443 |
5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (5 · 3) = ;15 |
|
Theorem | 5t4e20 9444 |
5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (5 · 4) = ;20 |
|
Theorem | 5t5e25 9445 |
5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (5 · 5) = ;25 |
|
Theorem | 6t2e12 9446 |
6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (6 · 2) = ;12 |
|
Theorem | 6t3e18 9447 |
6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (6 · 3) = ;18 |
|
Theorem | 6t4e24 9448 |
6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (6 · 4) = ;24 |
|
Theorem | 6t5e30 9449 |
6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (6 · 5) = ;30 |
|
Theorem | 6t6e36 9450 |
6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (6 · 6) = ;36 |
|
Theorem | 7t2e14 9451 |
7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 2) = ;14 |
|
Theorem | 7t3e21 9452 |
7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 3) = ;21 |
|
Theorem | 7t4e28 9453 |
7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 4) = ;28 |
|
Theorem | 7t5e35 9454 |
7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 5) = ;35 |
|
Theorem | 7t6e42 9455 |
7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 6) = ;42 |
|
Theorem | 7t7e49 9456 |
7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 7) = ;49 |
|
Theorem | 8t2e16 9457 |
8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 2) = ;16 |
|
Theorem | 8t3e24 9458 |
8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 3) = ;24 |
|
Theorem | 8t4e32 9459 |
8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 4) = ;32 |
|
Theorem | 8t5e40 9460 |
8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (8 · 5) = ;40 |
|
Theorem | 8t6e48 9461 |
8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (8 · 6) = ;48 |
|
Theorem | 8t7e56 9462 |
8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 7) = ;56 |
|
Theorem | 8t8e64 9463 |
8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 8) = ;64 |
|
Theorem | 9t2e18 9464 |
9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 2) = ;18 |
|
Theorem | 9t3e27 9465 |
9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 3) = ;27 |
|
Theorem | 9t4e36 9466 |
9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 4) = ;36 |
|
Theorem | 9t5e45 9467 |
9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 5) = ;45 |
|
Theorem | 9t6e54 9468 |
9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 6) = ;54 |
|
Theorem | 9t7e63 9469 |
9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 7) = ;63 |
|
Theorem | 9t8e72 9470 |
9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 8) = ;72 |
|
Theorem | 9t9e81 9471 |
9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 9) = ;81 |
|
Theorem | 9t11e99 9472 |
9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV,
6-Sep-2021.)
|
⊢ (9 · ;11) = ;99 |
|
Theorem | 9lt10 9473 |
9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
⊢ 9 < ;10 |
|
Theorem | 8lt10 9474 |
8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
⊢ 8 < ;10 |
|
Theorem | 7lt10 9475 |
7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 7 < ;10 |
|
Theorem | 6lt10 9476 |
6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 6 < ;10 |
|
Theorem | 5lt10 9477 |
5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 5 < ;10 |
|
Theorem | 4lt10 9478 |
4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 4 < ;10 |
|
Theorem | 3lt10 9479 |
3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 3 < ;10 |
|
Theorem | 2lt10 9480 |
2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 2 < ;10 |
|
Theorem | 1lt10 9481 |
1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario
Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
|
⊢ 1 < ;10 |
|
Theorem | decbin0 9482 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
|
Theorem | decbin2 9483 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
|
Theorem | decbin3 9484 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) |
|
Theorem | halfthird 9485 |
Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.)
|
⊢ ((1 / 2) − (1 / 3)) = (1 /
6) |
|
Theorem | 5recm6rec 9486 |
One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
|
⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
|
4.4.11 Upper sets of integers
|
|
Syntax | cuz 9487 |
Extend class notation with the upper integer function.
Read "ℤ≥‘𝑀 " as "the set of integers
greater than or equal to
𝑀".
|
class ℤ≥ |
|
Definition | df-uz 9488* |
Define a function whose value at 𝑗 is the semi-infinite set of
contiguous integers starting at 𝑗, which we will also call the
upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set
of integers greater than or equal to 𝑀". See uzval 9489 for its
value, uzssz 9506 for its relationship to ℤ, nnuz 9522 and nn0uz 9521 for
its relationships to ℕ and ℕ0, and eluz1 9491 and eluz2 9493 for
its membership relations. (Contributed by NM, 5-Sep-2005.)
|
⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
|
Theorem | uzval 9489* |
The value of the upper integers function. (Contributed by NM,
5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ (𝑁 ∈ ℤ →
(ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
|
Theorem | uzf 9490 |
The domain and range of the upper integers function. (Contributed by
Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢
ℤ≥:ℤ⟶𝒫
ℤ |
|
Theorem | eluz1 9491 |
Membership in the upper set of integers starting at 𝑀.
(Contributed by NM, 5-Sep-2005.)
|
⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
|
Theorem | eluzel2 9492 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
|
Theorem | eluz2 9493 |
Membership in an upper set of integers. We use the fact that a
function's value (under our function value definition) is empty outside
of its domain to show 𝑀 ∈ ℤ. (Contributed by NM,
5-Sep-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
|
Theorem | eluz1i 9494 |
Membership in an upper set of integers. (Contributed by NM,
5-Sep-2005.)
|
⊢ 𝑀 ∈ ℤ
⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
|
Theorem | eluzuzle 9495 |
An integer in an upper set of integers is an element of an upper set of
integers with a smaller bound. (Contributed by Alexander van der Vekens,
17-Jun-2018.)
|
⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
|
Theorem | eluzelz 9496 |
A member of an upper set of integers is an integer. (Contributed by NM,
6-Sep-2005.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
|
Theorem | eluzelre 9497 |
A member of an upper set of integers is a real. (Contributed by Mario
Carneiro, 31-Aug-2013.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
|
Theorem | eluzelcn 9498 |
A member of an upper set of integers is a complex number. (Contributed by
Glauco Siliprandi, 29-Jun-2017.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
|
Theorem | eluzle 9499 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
|
Theorem | eluz 9500 |
Membership in an upper set of integers. (Contributed by NM,
2-Oct-2005.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |