HomeHome Intuitionistic Logic Explorer
Theorem List (p. 95 of 135)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9401-9500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremraluz2 9401* Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
(∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
 
Theoremrexuz 9402* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
(𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
 
Theoremrexuz2 9403* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
(∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
 
Theorem2rexuz 9404* Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.)
(∃𝑚𝑛 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑))
 
Theorempeano2uz 9405 Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.)
(𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
 
Theorempeano2uzs 9406 Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
𝑍 = (ℤ𝑀)       (𝑁𝑍 → (𝑁 + 1) ∈ 𝑍)
 
Theorempeano2uzr 9407 Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ𝑀))
 
Theoremuzaddcl 9408 Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)
((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ𝑀))
 
Theoremnn0pzuz 9409 The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
((𝑁 ∈ ℕ0𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ𝑍))
 
Theoremuzind4 9410* Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))       (𝑁 ∈ (ℤ𝑀) → 𝜏)
 
Theoremuzind4ALT 9411* Induction on the upper set of integers that starts at an integer 𝑀. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 9410 or uzind4ALT 9411 may be used; see comment for nnind 8760. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝑀 ∈ ℤ → 𝜓)    &   (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))    &   (𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))       (𝑁 ∈ (ℤ𝑀) → 𝜏)
 
Theoremuzind4s 9412* Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
(𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)    &   (𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑))       (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑘]𝜑)
 
Theoremuzind4s2 9413* Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s 9412 when 𝑗 and 𝑘 must be distinct in [(𝑘 + 1) / 𝑗]𝜑. (Contributed by NM, 16-Nov-2005.)
(𝑀 ∈ ℤ → [𝑀 / 𝑗]𝜑)    &   (𝑘 ∈ (ℤ𝑀) → ([𝑘 / 𝑗]𝜑[(𝑘 + 1) / 𝑗]𝜑))       (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑗]𝜑)
 
Theoremuzind4i 9414* Induction on the upper integers that start at 𝑀. The first four give us the substitution instances we need, and the last two are the basis and the induction step. This is a stronger version of uzind4 9410 assuming that 𝜓 holds unconditionally. Notice that 𝑁 ∈ (ℤ𝑀) implies that the lower bound 𝑀 is an integer (𝑀 ∈ ℤ, see eluzel2 9355). (Contributed by NM, 4-Sep-2005.) (Revised by AV, 13-Jul-2022.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   𝜓    &   (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))       (𝑁 ∈ (ℤ𝑀) → 𝜏)
 
Theoremindstr 9415* Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))       (𝑥 ∈ ℕ → 𝜑)
 
Theoreminfrenegsupex 9416* The infimum of a set of reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
 
Theoremsupinfneg 9417* If a set of real numbers has a least upper bound, the set of the negation of those numbers has a greatest lower bound. For a theorem which is similar but only for the boundedness part, see ublbneg 9432. (Contributed by Jim Kingdon, 15-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑧 < 𝑦)))
 
Theoreminfsupneg 9418* If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 9417. (Contributed by Jim Kingdon, 15-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
 
Theoremsupminfex 9419* A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
 
Theoremeluznn0 9420 Membership in a nonnegative upper set of integers implies membership in 0. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
 
Theoremeluznn 9421 Membership in a positive upper set of integers implies membership in . (Contributed by JJ, 1-Oct-2018.)
((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
 
Theoremeluz2b1 9422 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
(𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
 
Theoremeluz2gt1 9423 An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.)
(𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
 
Theoremeluz2b2 9424 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
(𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
 
Theoremeluz2b3 9425 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
(𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
 
Theoremuz2m1nn 9426 One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.)
(𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
 
Theorem1nuz2 9427 1 is not in (ℤ‘2). (Contributed by Paul Chapman, 21-Nov-2012.)
¬ 1 ∈ (ℤ‘2)
 
Theoremelnn1uz2 9428 A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
(𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
 
Theoremuz2mulcl 9429 Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)
((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑀 · 𝑁) ∈ (ℤ‘2))
 
Theoremindstr2 9430* Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
(𝑥 = 1 → (𝜑𝜒))    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   𝜒    &   (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))       (𝑥 ∈ ℕ → 𝜑)
 
Theoremeluzdc 9431 Membership of an integer in an upper set of integers is decidable. (Contributed by Jim Kingdon, 18-Apr-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ𝑀))
 
Theoremublbneg 9432* The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9417. (Contributed by Paul Chapman, 21-Mar-2011.)
(∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
 
Theoremeqreznegel 9433* Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})
 
Theoremnegm 9434* The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
 
Theoremlbzbi 9435* If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
 
Theoremnn01to3 9436 A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
 
Theoremnn0ge2m1nnALT 9437 Alternate proof of nn0ge2m1nn 9061: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 9356, a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn 9061. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
 
4.4.12  Rational numbers (as a subset of complex numbers)
 
Syntaxcq 9438 Extend class notation to include the class of rationals.
class
 
Definitiondf-q 9439 Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 9441 for the relation "is rational." (Contributed by NM, 8-Jan-2002.)
ℚ = ( / “ (ℤ × ℕ))
 
Theoremdivfnzn 9440 Division restricted to ℤ × ℕ is a function. Given excluded middle, it would be easy to prove this for ℂ × (ℂ ∖ {0}). The key difference is that an element of is apart from zero, whereas being an element of ℂ ∖ {0} implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)
 
Theoremelq 9441* Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.)
(𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
 
Theoremqmulz 9442* If 𝐴 is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.)
(𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ)
 
Theoremznq 9443 The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
 
Theoremqre 9444 A rational number is a real number. (Contributed by NM, 14-Nov-2002.)
(𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
 
Theoremzq 9445 An integer is a rational number. (Contributed by NM, 9-Jan-2002.)
(𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
 
Theoremzssq 9446 The integers are a subset of the rationals. (Contributed by NM, 9-Jan-2002.)
ℤ ⊆ ℚ
 
Theoremnn0ssq 9447 The nonnegative integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
0 ⊆ ℚ
 
Theoremnnssq 9448 The positive integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
ℕ ⊆ ℚ
 
Theoremqssre 9449 The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.)
ℚ ⊆ ℝ
 
Theoremqsscn 9450 The rationals are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
ℚ ⊆ ℂ
 
Theoremqex 9451 The set of rational numbers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
ℚ ∈ V
 
Theoremnnq 9452 A positive integer is rational. (Contributed by NM, 17-Nov-2004.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℚ)
 
Theoremqcn 9453 A rational number is a complex number. (Contributed by NM, 2-Aug-2004.)
(𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
 
Theoremqaddcl 9454 Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)
 
Theoremqnegcl 9455 Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.)
(𝐴 ∈ ℚ → -𝐴 ∈ ℚ)
 
Theoremqmulcl 9456 Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℚ)
 
Theoremqsubcl 9457 Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵) ∈ ℚ)
 
Theoremqapne 9458 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))
 
Theoremqltlen 9459 Rational 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8418 which is a similar result for real numbers. (Contributed by Jim Kingdon, 11-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremqlttri2 9460 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 9-Nov-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremqreccl 9461 Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)
 
Theoremqdivcl 9462 Closure of division of rationals. (Contributed by NM, 3-Aug-2004.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
 
Theoremqrevaddcl 9463 Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.)
(𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ 𝐴 ∈ ℚ))
 
Theoremnnrecq 9464 The reciprocal of a positive integer is rational. (Contributed by NM, 17-Nov-2004.)
(𝐴 ∈ ℕ → (1 / 𝐴) ∈ ℚ)
 
Theoremirradd 9465 The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.)
((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℚ))
 
Theoremirrmul 9466 The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). (Contributed by NM, 7-Nov-2008.)
((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ))
 
Theoremelpq 9467* A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)
((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
 
Theoremelpqb 9468* A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.)
((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
 
4.4.13  Complex numbers as pairs of reals
 
Theoremcnref1o 9469* There is a natural one-to-one mapping from (ℝ × ℝ) to , where we map 𝑥, 𝑦 to (𝑥 + (i · 𝑦)). In our construction of the complex numbers, this is in fact our definition of (see df-c 7650), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))       𝐹:(ℝ × ℝ)–1-1-onto→ℂ
 
4.5  Order sets
 
4.5.1  Positive reals (as a subset of complex numbers)
 
Syntaxcrp 9470 Extend class notation to include the class of positive reals.
class +
 
Definitiondf-rp 9471 Define the set of positive reals. Definition of positive numbers in [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
 
Theoremelrp 9472 Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
(𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
 
Theoremelrpii 9473 Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)
𝐴 ∈ ℝ    &   0 < 𝐴       𝐴 ∈ ℝ+
 
Theorem1rp 9474 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.)
1 ∈ ℝ+
 
Theorem2rp 9475 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
2 ∈ ℝ+
 
Theorem3rp 9476 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
3 ∈ ℝ+
 
Theoremrpre 9477 A positive real is a real. (Contributed by NM, 27-Oct-2007.)
(𝐴 ∈ ℝ+𝐴 ∈ ℝ)
 
Theoremrpxr 9478 A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.)
(𝐴 ∈ ℝ+𝐴 ∈ ℝ*)
 
Theoremrpcn 9479 A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ+𝐴 ∈ ℂ)
 
Theoremnnrp 9480 A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
 
Theoremrpssre 9481 The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
+ ⊆ ℝ
 
Theoremrpgt0 9482 A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
(𝐴 ∈ ℝ+ → 0 < 𝐴)
 
Theoremrpge0 9483 A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)
(𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
 
Theoremrpregt0 9484 A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
 
Theoremrprege0 9485 A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
 
Theoremrpne0 9486 A positive real is nonzero. (Contributed by NM, 18-Jul-2008.)
(𝐴 ∈ ℝ+𝐴 ≠ 0)
 
Theoremrpap0 9487 A positive real is apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(𝐴 ∈ ℝ+𝐴 # 0)
 
Theoremrprene0 9488 A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))
 
Theoremrpreap0 9489 A positive real is a real number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 # 0))
 
Theoremrpcnne0 9490 A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
 
Theoremrpcnap0 9491 A positive real is a complex number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 # 0))
 
Theoremralrp 9492 Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
(∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥𝜑))
 
Theoremrexrp 9493 Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
(∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥𝜑))
 
Theoremrpaddcl 9494 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+)
 
Theoremrpmulcl 9495 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+)
 
Theoremrpdivcl 9496 Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)
 
Theoremrpreccl 9497 Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.)
(𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
 
Theoremrphalfcl 9498 Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.)
(𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)
 
Theoremrpgecl 9499 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)
 
Theoremrphalflt 9500 Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.)
(𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >