Theorem List for Intuitionistic Logic Explorer - 9401-9500   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | zdceq 9401 | 
Equality of integers is decidable.  (Contributed by Jim Kingdon,
     14-Mar-2020.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
 DECID 𝐴 =
 𝐵) | 
|   | 
| Theorem | zdcle 9402 | 
Integer ≤ is decidable.  (Contributed by Jim
Kingdon, 7-Apr-2020.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
 DECID 𝐴
 ≤ 𝐵) | 
|   | 
| Theorem | zdclt 9403 | 
Integer < is decidable.  (Contributed by Jim
Kingdon, 1-Jun-2020.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
 DECID 𝐴
 < 𝐵) | 
|   | 
| Theorem | zltlen 9404 | 
Integer 'Less than' expressed in terms of 'less than or equal to'.  Also
     see ltleap 8659 which is a similar result for real numbers. 
(Contributed by
     Jim Kingdon, 14-Mar-2020.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) | 
|   | 
| Theorem | nn0n0n1ge2b 9405 | 
A nonnegative integer is neither 0 nor 1 if and only if it is greater than
     or equal to 2.  (Contributed by Alexander van der Vekens, 17-Jan-2018.)
 | 
| ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | 
|   | 
| Theorem | nn0lt10b 9406 | 
A nonnegative integer less than 1 is 0.  (Contributed by Paul
     Chapman, 22-Jun-2011.)
 | 
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | 
|   | 
| Theorem | nn0lt2 9407 | 
A nonnegative integer less than 2 must be 0 or 1.  (Contributed by
     Alexander van der Vekens, 16-Sep-2018.)
 | 
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) | 
|   | 
| Theorem | nn0le2is012 9408 | 
A nonnegative integer which is less than or equal to 2 is either 0 or 1 or
     2.  (Contributed by AV, 16-Mar-2019.)
 | 
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | 
|   | 
| Theorem | nn0lem1lt 9409 | 
Nonnegative integer ordering relation.  (Contributed by NM,
     21-Jun-2005.)
 | 
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
 → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | 
|   | 
| Theorem | nnlem1lt 9410 | 
Positive integer ordering relation.  (Contributed by NM, 21-Jun-2005.)
 | 
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | 
|   | 
| Theorem | nnltlem1 9411 | 
Positive integer ordering relation.  (Contributed by NM, 21-Jun-2005.)
 | 
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | 
|   | 
| Theorem | nnm1ge0 9412 | 
A positive integer decreased by 1 is greater than or equal to 0.
     (Contributed by AV, 30-Oct-2018.)
 | 
| ⊢ (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1)) | 
|   | 
| Theorem | nn0ge0div 9413 | 
Division of a nonnegative integer by a positive number is not negative.
     (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 | 
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 0 ≤
 (𝐾 / 𝐿)) | 
|   | 
| Theorem | zdiv 9414* | 
Two ways to express "𝑀 divides 𝑁.  (Contributed by NM,
       3-Oct-2008.)
 | 
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | 
|   | 
| Theorem | zdivadd 9415 | 
Property of divisibility: if 𝐷 divides 𝐴 and 𝐵 then it
divides
     𝐴 +
𝐵.  (Contributed by
NM, 3-Oct-2008.)
 | 
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ) | 
|   | 
| Theorem | zdivmul 9416 | 
Property of divisibility: if 𝐷 divides 𝐴 then it divides
     𝐵
· 𝐴. 
(Contributed by NM, 3-Oct-2008.)
 | 
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ) | 
|   | 
| Theorem | zextle 9417* | 
An extensionality-like property for integer ordering.  (Contributed by
       NM, 29-Oct-2005.)
 | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) | 
|   | 
| Theorem | zextlt 9418* | 
An extensionality-like property for integer ordering.  (Contributed by
       NM, 29-Oct-2005.)
 | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) | 
|   | 
| Theorem | recnz 9419 | 
The reciprocal of a number greater than 1 is not an integer.  (Contributed
     by NM, 3-May-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈
 ℤ) | 
|   | 
| Theorem | btwnnz 9420 | 
A number between an integer and its successor is not an integer.
     (Contributed by NM, 3-May-2005.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ) | 
|   | 
| Theorem | gtndiv 9421 | 
A larger number does not divide a smaller positive integer.  (Contributed
     by NM, 3-May-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) | 
|   | 
| Theorem | halfnz 9422 | 
One-half is not an integer.  (Contributed by NM, 31-Jul-2004.)
 | 
| ⊢  ¬ (1 / 2) ∈
 ℤ | 
|   | 
| Theorem | 3halfnz 9423 | 
Three halves is not an integer.  (Contributed by AV, 2-Jun-2020.)
 | 
| ⊢  ¬ (3 / 2) ∈
 ℤ | 
|   | 
| Theorem | suprzclex 9424* | 
The supremum of a set of integers is an element of the set.
       (Contributed by Jim Kingdon, 20-Dec-2021.)
 | 
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))    &   ⊢ (𝜑 → 𝐴 ⊆ ℤ)   
 ⇒   ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) | 
|   | 
| Theorem | prime 9425* | 
Two ways to express "𝐴 is a prime number (or 1)". 
(Contributed by
       NM, 4-May-2005.)
 | 
| ⊢ (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) | 
|   | 
| Theorem | msqznn 9426 | 
The square of a nonzero integer is a positive integer.  (Contributed by
     NM, 2-Aug-2004.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ) | 
|   | 
| Theorem | zneo 9427 | 
No even integer equals an odd integer (i.e. no integer can be both even
     and odd).  Exercise 10(a) of [Apostol] p.
28.  (Contributed by NM,
     31-Jul-2004.)  (Proof shortened by Mario Carneiro, 18-May-2014.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) | 
|   | 
| Theorem | nneoor 9428 | 
A positive integer is even or odd.  (Contributed by Jim Kingdon,
       15-Mar-2020.)
 | 
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈
 ℕ)) | 
|   | 
| Theorem | nneo 9429 | 
A positive integer is even or odd but not both.  (Contributed by NM,
       1-Jan-2006.)  (Proof shortened by Mario Carneiro, 18-May-2014.)
 | 
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈
 ℕ)) | 
|   | 
| Theorem | nneoi 9430 | 
A positive integer is even or odd but not both.  (Contributed by NM,
       20-Aug-2001.)
 | 
| ⊢ 𝑁 ∈ ℕ   
 ⇒   ⊢ ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈
 ℕ) | 
|   | 
| Theorem | zeo 9431 | 
An integer is even or odd.  (Contributed by NM, 1-Jan-2006.)
 | 
| ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈
 ℤ)) | 
|   | 
| Theorem | zeo2 9432 | 
An integer is even or odd but not both.  (Contributed by Mario Carneiro,
     12-Sep-2015.)
 | 
| ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈
 ℤ)) | 
|   | 
| Theorem | peano2uz2 9433* | 
Second Peano postulate for upper integers.  (Contributed by NM,
       3-Oct-2004.)
 | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) | 
|   | 
| Theorem | peano5uzti 9434* | 
Peano's inductive postulate for upper integers.  (Contributed by NM,
       6-Jul-2005.)  (Revised by Mario Carneiro, 25-Jul-2013.)
 | 
| ⊢ (𝑁 ∈ ℤ → ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴)) | 
|   | 
| Theorem | peano5uzi 9435* | 
Peano's inductive postulate for upper integers.  (Contributed by NM,
         6-Jul-2005.)  (Revised by Mario Carneiro, 3-May-2014.)
 | 
| ⊢ 𝑁 ∈ ℤ   
 ⇒   ⊢ ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴) | 
|   | 
| Theorem | dfuzi 9436* | 
An expression for the upper integers that start at 𝑁 that is
       analogous to dfnn2 8992 for positive integers.  (Contributed by NM,
       6-Jul-2005.)  (Proof shortened by Mario Carneiro, 3-May-2014.)
 | 
| ⊢ 𝑁 ∈ ℤ   
 ⇒   ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | 
|   | 
| Theorem | uzind 9437* | 
Induction on the upper integers that start at 𝑀.  The first four
       hypotheses give us the substitution instances we need; the last two are
       the basis and the induction step.  (Contributed by NM, 5-Jul-2005.)
 | 
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓))    &   ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒))    &   ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃))    &   ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏))    &   ⊢ (𝑀 ∈ ℤ → 𝜓)    &   ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜒 → 𝜃))    ⇒   ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) | 
|   | 
| Theorem | uzind2 9438* | 
Induction on the upper integers that start after an integer 𝑀.
       The first four hypotheses give us the substitution instances we need;
       the last two are the basis and the induction step.  (Contributed by NM,
       25-Jul-2005.)
 | 
| ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓))    &   ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒))    &   ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃))    &   ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏))    &   ⊢ (𝑀 ∈ ℤ → 𝜓)    &   ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃))    ⇒   ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) | 
|   | 
| Theorem | uzind3 9439* | 
Induction on the upper integers that start at an integer 𝑀.  The
       first four hypotheses give us the substitution instances we need, and
       the last two are the basis and the induction step.  (Contributed by NM,
       26-Jul-2005.)
 | 
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓))    &   ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒))    &   ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃))    &   ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏))    &   ⊢ (𝑀 ∈ ℤ → 𝜓)    &   ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃))    ⇒   ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) | 
|   | 
| Theorem | nn0ind 9440* | 
Principle of Mathematical Induction (inference schema) on nonnegative
       integers.  The first four hypotheses give us the substitution instances
       we need; the last two are the basis and the induction step.
       (Contributed by NM, 13-May-2004.)
 | 
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓))    &   ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒))    &   ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃))    &   ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏))    &   ⊢ 𝜓    &   ⊢ (𝑦 ∈ ℕ0
 → (𝜒 → 𝜃))    ⇒   ⊢ (𝐴 ∈ ℕ0 → 𝜏) | 
|   | 
| Theorem | fzind 9441* | 
Induction on the integers from 𝑀 to 𝑁 inclusive .  The first
       four hypotheses give us the substitution instances we need; the last two
       are the basis and the induction step.  (Contributed by Paul Chapman,
       31-Mar-2011.)
 | 
| ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓))    &   ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒))    &   ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃))    &   ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏))    &   ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓)   
 &   ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃))    ⇒   ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) | 
|   | 
| Theorem | fnn0ind 9442* | 
Induction on the integers from 0 to 𝑁
inclusive .  The first
       four hypotheses give us the substitution instances we need; the last two
       are the basis and the induction step.  (Contributed by Paul Chapman,
       31-Mar-2011.)
 | 
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓))    &   ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒))    &   ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃))    &   ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏))    &   ⊢ (𝑁 ∈ ℕ0
 → 𝜓)    &   ⊢ ((𝑁 ∈ ℕ0
 ∧ 𝑦 ∈
 ℕ0 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃))    ⇒   ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0
 ∧ 𝐾 ≤ 𝑁) → 𝜏) | 
|   | 
| Theorem | nn0ind-raph 9443* | 
Principle of Mathematical Induction (inference schema) on nonnegative
       integers.  The first four hypotheses give us the substitution instances
       we need; the last two are the basis and the induction step.  Raph Levien
       remarks:  "This seems a bit painful.  I wonder if an explicit
       substitution version would be easier."  (Contributed by Raph
Levien,
       10-Apr-2004.)
 | 
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓))    &   ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒))    &   ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃))    &   ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏))    &   ⊢ 𝜓    &   ⊢ (𝑦 ∈ ℕ0
 → (𝜒 → 𝜃))    ⇒   ⊢ (𝐴 ∈ ℕ0 → 𝜏) | 
|   | 
| Theorem | zindd 9444* | 
Principle of Mathematical Induction on all integers, deduction version.
       The first five hypotheses give the substitutions; the last three are the
       basis, the induction, and the extension to negative numbers.
       (Contributed by Paul Chapman, 17-Apr-2009.)  (Proof shortened by Mario
       Carneiro, 4-Jan-2017.)
 | 
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓))    &   ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒))    &   ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏))    &   ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃))    &   ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂))    &   ⊢ (𝜁 → 𝜓)   
 &   ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏)))    &   ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃)))    ⇒   ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) | 
|   | 
| Theorem | btwnz 9445* | 
Any real number can be sandwiched between two integers.  Exercise 2 of
       [Apostol] p. 28.  (Contributed by NM,
10-Nov-2004.)
 | 
| ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) | 
|   | 
| Theorem | nn0zd 9446 | 
A positive integer is an integer.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈
 ℕ0)    ⇒   ⊢ (𝜑 → 𝐴 ∈ ℤ) | 
|   | 
| Theorem | nnzd 9447 | 
A nonnegative integer is an integer.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℕ)   
 ⇒   ⊢ (𝜑 → 𝐴 ∈ ℤ) | 
|   | 
| Theorem | zred 9448 | 
An integer is a real number.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
|   | 
| Theorem | zcnd 9449 | 
An integer is a complex number.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
|   | 
| Theorem | znegcld 9450 | 
Closure law for negative integers.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → -𝐴 ∈ ℤ) | 
|   | 
| Theorem | peano2zd 9451 | 
Deduction from second Peano postulate generalized to integers.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) | 
|   | 
| Theorem | zaddcld 9452 | 
Closure of addition of integers.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)    &   ⊢ (𝜑 → 𝐵 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) | 
|   | 
| Theorem | zsubcld 9453 | 
Closure of subtraction of integers.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)    &   ⊢ (𝜑 → 𝐵 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) | 
|   | 
| Theorem | zmulcld 9454 | 
Closure of multiplication of integers.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)    &   ⊢ (𝜑 → 𝐵 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) | 
|   | 
| Theorem | zadd2cl 9455 | 
Increasing an integer by 2 results in an integer.  (Contributed by
     Alexander van der Vekens, 16-Sep-2018.)
 | 
| ⊢ (𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ) | 
|   | 
| Theorem | btwnapz 9456 | 
A number between an integer and its successor is apart from any integer.
       (Contributed by Jim Kingdon, 6-Jan-2023.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℤ)    &   ⊢ (𝜑 → 𝐴 < 𝐵)   
 &   ⊢ (𝜑 → 𝐵 < (𝐴 + 1))    ⇒   ⊢ (𝜑 → 𝐵 # 𝐶) | 
|   | 
| 4.4.10  Decimal arithmetic
 | 
|   | 
| Syntax | cdc 9457 | 
Constant used for decimal constructor.
 | 
| class ;𝐴𝐵 | 
|   | 
| Definition | df-dec 9458 | 
Define the "decimal constructor", which is used to build up
"decimal
     integers" or "numeric terms" in base 10.  For example,
     (;;;1000 + ;;;2000) = ;;;3000 1kp2ke3k 15370.
     (Contributed by Mario Carneiro, 17-Apr-2015.)  (Revised by AV,
     1-Aug-2021.)
 | 
| ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | 
|   | 
| Theorem | 9p1e10 9459 | 
9 + 1 = 10.  (Contributed by Mario Carneiro, 18-Apr-2015.)  (Revised by
     Stanislas Polu, 7-Apr-2020.)  (Revised by AV, 1-Aug-2021.)
 | 
| ⊢ (9 + 1) = ;10 | 
|   | 
| Theorem | dfdec10 9460 | 
Version of the definition of the "decimal constructor" using ;10
     instead of the symbol 10.  Of course, this statement cannot be used as
     definition, because it uses the "decimal constructor". 
(Contributed by
     AV, 1-Aug-2021.)
 | 
| ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | 
|   | 
| Theorem | deceq1 9461 | 
Equality theorem for the decimal constructor.  (Contributed by Mario
     Carneiro, 17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) | 
|   | 
| Theorem | deceq2 9462 | 
Equality theorem for the decimal constructor.  (Contributed by Mario
     Carneiro, 17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) | 
|   | 
| Theorem | deceq1i 9463 | 
Equality theorem for the decimal constructor.  (Contributed by Mario
       Carneiro, 17-Apr-2015.)
 | 
| ⊢ 𝐴 = 𝐵    ⇒   ⊢ ;𝐴𝐶 = ;𝐵𝐶 | 
|   | 
| Theorem | deceq2i 9464 | 
Equality theorem for the decimal constructor.  (Contributed by Mario
       Carneiro, 17-Apr-2015.)
 | 
| ⊢ 𝐴 = 𝐵    ⇒   ⊢ ;𝐶𝐴 = ;𝐶𝐵 | 
|   | 
| Theorem | deceq12i 9465 | 
Equality theorem for the decimal constructor.  (Contributed by Mario
       Carneiro, 17-Apr-2015.)
 | 
| ⊢ 𝐴 = 𝐵   
 &   ⊢ 𝐶 = 𝐷    ⇒   ⊢ ;𝐴𝐶 = ;𝐵𝐷 | 
|   | 
| Theorem | numnncl 9466 | 
Closure for a numeral (with units place).  (Contributed by Mario
         Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ   
 ⇒   ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ | 
|   | 
| Theorem | num0u 9467 | 
Add a zero in the units place.  (Contributed by Mario Carneiro,
       18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0    ⇒   ⊢ (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0) | 
|   | 
| Theorem | num0h 9468 | 
Add a zero in the higher places.  (Contributed by Mario Carneiro,
       18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0    ⇒   ⊢ 𝐴 = ((𝑇 · 0) + 𝐴) | 
|   | 
| Theorem | numcl 9469 | 
Closure for a decimal integer (with units place).  (Contributed by Mario
       Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈
 ℕ0    ⇒   ⊢ ((𝑇 · 𝐴) + 𝐵) ∈
 ℕ0 | 
|   | 
| Theorem | numsuc 9470 | 
The successor of a decimal integer (no carry).  (Contributed by Mario
       Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ0    &   ⊢ (𝐵 + 1) = 𝐶   
 &   ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵)    ⇒   ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) | 
|   | 
| Theorem | deccl 9471 | 
Closure for a numeral.  (Contributed by Mario Carneiro, 17-Apr-2015.)
       (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0    ⇒   ⊢ ;𝐴𝐵 ∈
 ℕ0 | 
|   | 
| Theorem | 10nn 9472 | 
10 is a positive integer.  (Contributed by NM, 8-Nov-2012.)  (Revised by
     AV, 6-Sep-2021.)
 | 
| ⊢ ;10 ∈ ℕ | 
|   | 
| Theorem | 10pos 9473 | 
The number 10 is positive.  (Contributed by NM, 5-Feb-2007.)  (Revised by
     AV, 8-Sep-2021.)
 | 
| ⊢ 0 < ;10 | 
|   | 
| Theorem | 10nn0 9474 | 
10 is a nonnegative integer.  (Contributed by Mario Carneiro,
     19-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ ;10 ∈ ℕ0 | 
|   | 
| Theorem | 10re 9475 | 
The number 10 is real.  (Contributed by NM, 5-Feb-2007.)  (Revised by AV,
     8-Sep-2021.)
 | 
| ⊢ ;10 ∈ ℝ | 
|   | 
| Theorem | decnncl 9476 | 
Closure for a numeral.  (Contributed by Mario Carneiro, 17-Apr-2015.)
       (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ    ⇒   ⊢ ;𝐴𝐵 ∈ ℕ | 
|   | 
| Theorem | dec0u 9477 | 
Add a zero in the units place.  (Contributed by Mario Carneiro,
       17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈
 ℕ0    ⇒   ⊢ (;10 · 𝐴) = ;𝐴0 | 
|   | 
| Theorem | dec0h 9478 | 
Add a zero in the higher places.  (Contributed by Mario Carneiro,
       17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈
 ℕ0    ⇒   ⊢ 𝐴 = ;0𝐴 | 
|   | 
| Theorem | numnncl2 9479 | 
Closure for a decimal integer (zero units place).  (Contributed by Mario
       Carneiro, 9-Mar-2015.)
 | 
| ⊢ 𝑇 ∈ ℕ    &   ⊢ 𝐴 ∈
 ℕ    ⇒   ⊢ ((𝑇 · 𝐴) + 0) ∈ ℕ | 
|   | 
| Theorem | decnncl2 9480 | 
Closure for a decimal integer (zero units place).  (Contributed by Mario
       Carneiro, 17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ   
 ⇒   ⊢ ;𝐴0 ∈ ℕ | 
|   | 
| Theorem | numlt 9481 | 
Comparing two decimal integers (equal higher places).  (Contributed by
         Mario Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ0    &   ⊢ 𝐶 ∈ ℕ    &   ⊢ 𝐵 < 𝐶    ⇒   ⊢ ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶) | 
|   | 
| Theorem | numltc 9482 | 
Comparing two decimal integers (unequal higher places).  (Contributed by
       Mario Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ0    &   ⊢ 𝐶 ∈
 ℕ0   
 &   ⊢ 𝐷 ∈ ℕ0    &   ⊢ 𝐶 < 𝑇   
 &   ⊢ 𝐴 < 𝐵    ⇒   ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) | 
|   | 
| Theorem | le9lt10 9483 | 
A "decimal digit" (i.e. a nonnegative integer less than or equal to
9)
       is less then 10.  (Contributed by AV, 8-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐴 ≤
 9    ⇒   ⊢ 𝐴 < ;10 | 
|   | 
| Theorem | declt 9484 | 
Comparing two decimal integers (equal higher places).  (Contributed by
         Mario Carneiro, 17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ    &   ⊢ 𝐵 < 𝐶    ⇒   ⊢ ;𝐴𝐵 < ;𝐴𝐶 | 
|   | 
| Theorem | decltc 9485 | 
Comparing two decimal integers (unequal higher places).  (Contributed
         by Mario Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝐶 < ;10   
 &   ⊢ 𝐴 < 𝐵    ⇒   ⊢ ;𝐴𝐶 < ;𝐵𝐷 | 
|   | 
| Theorem | declth 9486 | 
Comparing two decimal integers (unequal higher places).  (Contributed
         by AV, 8-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝐶 ≤ 9    &   ⊢ 𝐴 < 𝐵    ⇒   ⊢ ;𝐴𝐶 < ;𝐵𝐷 | 
|   | 
| Theorem | decsuc 9487 | 
The successor of a decimal integer (no carry).  (Contributed by Mario
       Carneiro, 17-Apr-2015.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ (𝐵 + 1) = 𝐶   
 &   ⊢ 𝑁 = ;𝐴𝐵    ⇒   ⊢ (𝑁 + 1) = ;𝐴𝐶 | 
|   | 
| Theorem | 3declth 9488 | 
Comparing two decimal integers with three "digits" (unequal higher
         places).  (Contributed by AV, 8-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝐸 ∈ ℕ0    &   ⊢ 𝐹 ∈
 ℕ0   
 &   ⊢ 𝐴 < 𝐵   
 &   ⊢ 𝐶 ≤ 9    &   ⊢ 𝐸 ≤
 9    ⇒   ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 | 
|   | 
| Theorem | 3decltc 9489 | 
Comparing two decimal integers with three "digits" (unequal higher
       places).  (Contributed by AV, 15-Jun-2021.)  (Revised by AV,
       6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝐸 ∈ ℕ0    &   ⊢ 𝐹 ∈
 ℕ0   
 &   ⊢ 𝐴 < 𝐵   
 &   ⊢ 𝐶 < ;10   
 &   ⊢ 𝐸 < ;10    ⇒   ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 | 
|   | 
| Theorem | decle 9490 | 
Comparing two decimal integers (equal higher places).  (Contributed by
         AV, 17-Aug-2021.)  (Revised by AV, 8-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐵 ≤ 𝐶    ⇒   ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 | 
|   | 
| Theorem | decleh 9491 | 
Comparing two decimal integers (unequal higher places).  (Contributed by
       AV, 17-Aug-2021.)  (Revised by AV, 8-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝐶 ≤ 9    &   ⊢ 𝐴 < 𝐵    ⇒   ⊢ ;𝐴𝐶 ≤ ;𝐵𝐷 | 
|   | 
| Theorem | declei 9492 | 
Comparing a digit to a decimal integer.  (Contributed by AV,
       17-Aug-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐶 ≤
 9    ⇒   ⊢ 𝐶 ≤ ;𝐴𝐵 | 
|   | 
| Theorem | numlti 9493 | 
Comparing a digit to a decimal integer.  (Contributed by Mario Carneiro,
       18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ    &   ⊢ 𝐴 ∈ ℕ    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐶 < 𝑇    ⇒   ⊢ 𝐶 < ((𝑇 · 𝐴) + 𝐵) | 
|   | 
| Theorem | declti 9494 | 
Comparing a digit to a decimal integer.  (Contributed by Mario
         Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐶 < ;10    ⇒   ⊢ 𝐶 < ;𝐴𝐵 | 
|   | 
| Theorem | decltdi 9495 | 
Comparing a digit to a decimal integer.  (Contributed by AV,
       8-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐶 ≤
 9    ⇒   ⊢ 𝐶 < ;𝐴𝐵 | 
|   | 
| Theorem | numsucc 9496 | 
The successor of a decimal integer (with carry).  (Contributed by Mario
       Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑌 ∈ ℕ0    &   ⊢ 𝑇 = (𝑌 + 1)    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ (𝐴 + 1) = 𝐵   
 &   ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌)    ⇒   ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) | 
|   | 
| Theorem | decsucc 9497 | 
The successor of a decimal integer (with carry).  (Contributed by Mario
       Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ (𝐴 + 1) = 𝐵   
 &   ⊢ 𝑁 = ;𝐴9    ⇒   ⊢ (𝑁 + 1) = ;𝐵0 | 
|   | 
| Theorem | 1e0p1 9498 | 
The successor of zero.  (Contributed by Mario Carneiro, 18-Feb-2014.)
 | 
| ⊢ 1 = (0 + 1) | 
|   | 
| Theorem | dec10p 9499 | 
Ten plus an integer.  (Contributed by Mario Carneiro, 19-Apr-2015.)
     (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (;10 + 𝐴) = ;1𝐴 | 
|   | 
| Theorem | numma 9500 | 
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
         a fixed multiplicand 𝑃 (no carry).  (Contributed by Mario
         Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ0    &   ⊢ 𝐶 ∈
 ℕ0   
 &   ⊢ 𝐷 ∈ ℕ0    &   ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)   
 &   ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)   
 &   ⊢ 𝑃 ∈ ℕ0    &   ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸   
 &   ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹    ⇒   ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |