Theorem List for Intuitionistic Logic Explorer - 9401-9500 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | nnlem1lt 9401 |
Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
|
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
|
Theorem | nnltlem1 9402 |
Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
|
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
|
Theorem | nnm1ge0 9403 |
A positive integer decreased by 1 is greater than or equal to 0.
(Contributed by AV, 30-Oct-2018.)
|
⊢ (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1)) |
|
Theorem | nn0ge0div 9404 |
Division of a nonnegative integer by a positive number is not negative.
(Contributed by Alexander van der Vekens, 14-Apr-2018.)
|
⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 0 ≤
(𝐾 / 𝐿)) |
|
Theorem | zdiv 9405* |
Two ways to express "𝑀 divides 𝑁. (Contributed by NM,
3-Oct-2008.)
|
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
|
Theorem | zdivadd 9406 |
Property of divisibility: if 𝐷 divides 𝐴 and 𝐵 then it
divides
𝐴 +
𝐵. (Contributed by
NM, 3-Oct-2008.)
|
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ) |
|
Theorem | zdivmul 9407 |
Property of divisibility: if 𝐷 divides 𝐴 then it divides
𝐵
· 𝐴.
(Contributed by NM, 3-Oct-2008.)
|
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ) |
|
Theorem | zextle 9408* |
An extensionality-like property for integer ordering. (Contributed by
NM, 29-Oct-2005.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) |
|
Theorem | zextlt 9409* |
An extensionality-like property for integer ordering. (Contributed by
NM, 29-Oct-2005.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) |
|
Theorem | recnz 9410 |
The reciprocal of a number greater than 1 is not an integer. (Contributed
by NM, 3-May-2005.)
|
⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈
ℤ) |
|
Theorem | btwnnz 9411 |
A number between an integer and its successor is not an integer.
(Contributed by NM, 3-May-2005.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ) |
|
Theorem | gtndiv 9412 |
A larger number does not divide a smaller positive integer. (Contributed
by NM, 3-May-2005.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
|
Theorem | halfnz 9413 |
One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
|
⊢ ¬ (1 / 2) ∈
ℤ |
|
Theorem | 3halfnz 9414 |
Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
|
⊢ ¬ (3 / 2) ∈
ℤ |
|
Theorem | suprzclex 9415* |
The supremum of a set of integers is an element of the set.
(Contributed by Jim Kingdon, 20-Dec-2021.)
|
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℤ)
⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) |
|
Theorem | prime 9416* |
Two ways to express "𝐴 is a prime number (or 1)".
(Contributed by
NM, 4-May-2005.)
|
⊢ (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
|
Theorem | msqznn 9417 |
The square of a nonzero integer is a positive integer. (Contributed by
NM, 2-Aug-2004.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ) |
|
Theorem | zneo 9418 |
No even integer equals an odd integer (i.e. no integer can be both even
and odd). Exercise 10(a) of [Apostol] p.
28. (Contributed by NM,
31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) |
|
Theorem | nneoor 9419 |
A positive integer is even or odd. (Contributed by Jim Kingdon,
15-Mar-2020.)
|
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈
ℕ)) |
|
Theorem | nneo 9420 |
A positive integer is even or odd but not both. (Contributed by NM,
1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
|
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈
ℕ)) |
|
Theorem | nneoi 9421 |
A positive integer is even or odd but not both. (Contributed by NM,
20-Aug-2001.)
|
⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈
ℕ) |
|
Theorem | zeo 9422 |
An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
|
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈
ℤ)) |
|
Theorem | zeo2 9423 |
An integer is even or odd but not both. (Contributed by Mario Carneiro,
12-Sep-2015.)
|
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈
ℤ)) |
|
Theorem | peano2uz2 9424* |
Second Peano postulate for upper integers. (Contributed by NM,
3-Oct-2004.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
|
Theorem | peano5uzti 9425* |
Peano's inductive postulate for upper integers. (Contributed by NM,
6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
|
⊢ (𝑁 ∈ ℤ → ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴)) |
|
Theorem | peano5uzi 9426* |
Peano's inductive postulate for upper integers. (Contributed by NM,
6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
|
⊢ 𝑁 ∈ ℤ
⇒ ⊢ ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴) |
|
Theorem | dfuzi 9427* |
An expression for the upper integers that start at 𝑁 that is
analogous to dfnn2 8984 for positive integers. (Contributed by NM,
6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
|
⊢ 𝑁 ∈ ℤ
⇒ ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
|
Theorem | uzind 9428* |
Induction on the upper integers that start at 𝑀. The first four
hypotheses give us the substitution instances we need; the last two are
the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
|
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) |
|
Theorem | uzind2 9429* |
Induction on the upper integers that start after an integer 𝑀.
The first four hypotheses give us the substitution instances we need;
the last two are the basis and the induction step. (Contributed by NM,
25-Jul-2005.)
|
⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
|
Theorem | uzind3 9430* |
Induction on the upper integers that start at an integer 𝑀. The
first four hypotheses give us the substitution instances we need, and
the last two are the basis and the induction step. (Contributed by NM,
26-Jul-2005.)
|
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) |
|
Theorem | nn0ind 9431* |
Principle of Mathematical Induction (inference schema) on nonnegative
integers. The first four hypotheses give us the substitution instances
we need; the last two are the basis and the induction step.
(Contributed by NM, 13-May-2004.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0
→ (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
|
Theorem | fzind 9432* |
Induction on the integers from 𝑀 to 𝑁 inclusive . The first
four hypotheses give us the substitution instances we need; the last two
are the basis and the induction step. (Contributed by Paul Chapman,
31-Mar-2011.)
|
⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓)
& ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) ⇒ ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) |
|
Theorem | fnn0ind 9433* |
Induction on the integers from 0 to 𝑁
inclusive . The first
four hypotheses give us the substitution instances we need; the last two
are the basis and the induction step. (Contributed by Paul Chapman,
31-Mar-2011.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ ℕ0
→ 𝜓) & ⊢ ((𝑁 ∈ ℕ0
∧ 𝑦 ∈
ℕ0 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0
∧ 𝐾 ≤ 𝑁) → 𝜏) |
|
Theorem | nn0ind-raph 9434* |
Principle of Mathematical Induction (inference schema) on nonnegative
integers. The first four hypotheses give us the substitution instances
we need; the last two are the basis and the induction step. Raph Levien
remarks: "This seems a bit painful. I wonder if an explicit
substitution version would be easier." (Contributed by Raph
Levien,
10-Apr-2004.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0
→ (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
|
Theorem | zindd 9435* |
Principle of Mathematical Induction on all integers, deduction version.
The first five hypotheses give the substitutions; the last three are the
basis, the induction, and the extension to negative numbers.
(Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario
Carneiro, 4-Jan-2017.)
|
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ (𝜁 → 𝜓)
& ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) & ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) ⇒ ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
|
Theorem | btwnz 9436* |
Any real number can be sandwiched between two integers. Exercise 2 of
[Apostol] p. 28. (Contributed by NM,
10-Nov-2004.)
|
⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
|
Theorem | nn0zd 9437 |
A positive integer is an integer. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈
ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) |
|
Theorem | nnzd 9438 |
A nonnegative integer is an integer. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℕ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) |
|
Theorem | zred 9439 |
An integer is a real number. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) |
|
Theorem | zcnd 9440 |
An integer is a complex number. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) |
|
Theorem | znegcld 9441 |
Closure law for negative integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → -𝐴 ∈ ℤ) |
|
Theorem | peano2zd 9442 |
Deduction from second Peano postulate generalized to integers.
(Contributed by Mario Carneiro, 28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) |
|
Theorem | zaddcld 9443 |
Closure of addition of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
|
Theorem | zsubcld 9444 |
Closure of subtraction of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
|
Theorem | zmulcld 9445 |
Closure of multiplication of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) |
|
Theorem | zadd2cl 9446 |
Increasing an integer by 2 results in an integer. (Contributed by
Alexander van der Vekens, 16-Sep-2018.)
|
⊢ (𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ) |
|
Theorem | btwnapz 9447 |
A number between an integer and its successor is apart from any integer.
(Contributed by Jim Kingdon, 6-Jan-2023.)
|
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → 𝐵 < (𝐴 + 1)) ⇒ ⊢ (𝜑 → 𝐵 # 𝐶) |
|
4.4.10 Decimal arithmetic
|
|
Syntax | cdc 9448 |
Constant used for decimal constructor.
|
class ;𝐴𝐵 |
|
Definition | df-dec 9449 |
Define the "decimal constructor", which is used to build up
"decimal
integers" or "numeric terms" in base 10. For example,
(;;;1000 + ;;;2000) = ;;;3000 1kp2ke3k 15216.
(Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV,
1-Aug-2021.)
|
⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) |
|
Theorem | 9p1e10 9450 |
9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by
Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
|
⊢ (9 + 1) = ;10 |
|
Theorem | dfdec10 9451 |
Version of the definition of the "decimal constructor" using ;10
instead of the symbol 10. Of course, this statement cannot be used as
definition, because it uses the "decimal constructor".
(Contributed by
AV, 1-Aug-2021.)
|
⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
|
Theorem | deceq1 9452 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
|
Theorem | deceq2 9453 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
|
Theorem | deceq1i 9454 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
|
Theorem | deceq2i 9455 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐶𝐴 = ;𝐶𝐵 |
|
Theorem | deceq12i 9456 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
⊢ 𝐴 = 𝐵
& ⊢ 𝐶 = 𝐷 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
|
Theorem | numnncl 9457 |
Closure for a numeral (with units place). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ
⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ |
|
Theorem | num0u 9458 |
Add a zero in the units place. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0) |
|
Theorem | num0h 9459 |
Add a zero in the higher places. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ 𝐴 = ((𝑇 · 0) + 𝐴) |
|
Theorem | numcl 9460 |
Closure for a decimal integer (with units place). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈
ℕ0 |
|
Theorem | numsuc 9461 |
The successor of a decimal integer (no carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 + 1) = 𝐶
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) |
|
Theorem | deccl 9462 |
Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ ;𝐴𝐵 ∈
ℕ0 |
|
Theorem | 10nn 9463 |
10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by
AV, 6-Sep-2021.)
|
⊢ ;10 ∈ ℕ |
|
Theorem | 10pos 9464 |
The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by
AV, 8-Sep-2021.)
|
⊢ 0 < ;10 |
|
Theorem | 10nn0 9465 |
10 is a nonnegative integer. (Contributed by Mario Carneiro,
19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ ;10 ∈ ℕ0 |
|
Theorem | 10re 9466 |
The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV,
8-Sep-2021.)
|
⊢ ;10 ∈ ℝ |
|
Theorem | decnncl 9467 |
Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ ⇒ ⊢ ;𝐴𝐵 ∈ ℕ |
|
Theorem | dec0u 9468 |
Add a zero in the units place. (Contributed by Mario Carneiro,
17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (;10 · 𝐴) = ;𝐴0 |
|
Theorem | dec0h 9469 |
Add a zero in the higher places. (Contributed by Mario Carneiro,
17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ 𝐴 = ;0𝐴 |
|
Theorem | numnncl2 9470 |
Closure for a decimal integer (zero units place). (Contributed by Mario
Carneiro, 9-Mar-2015.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈
ℕ ⇒ ⊢ ((𝑇 · 𝐴) + 0) ∈ ℕ |
|
Theorem | decnncl2 9471 |
Closure for a decimal integer (zero units place). (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ
⇒ ⊢ ;𝐴0 ∈ ℕ |
|
Theorem | numlt 9472 |
Comparing two decimal integers (equal higher places). (Contributed by
Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶) |
|
Theorem | numltc 9473 |
Comparing two decimal integers (unequal higher places). (Contributed by
Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 < 𝑇
& ⊢ 𝐴 < 𝐵 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
|
Theorem | le9lt10 9474 |
A "decimal digit" (i.e. a nonnegative integer less than or equal to
9)
is less then 10. (Contributed by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐴 ≤
9 ⇒ ⊢ 𝐴 < ;10 |
|
Theorem | declt 9475 |
Comparing two decimal integers (equal higher places). (Contributed by
Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ;𝐴𝐵 < ;𝐴𝐶 |
|
Theorem | decltc 9476 |
Comparing two decimal integers (unequal higher places). (Contributed
by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 < ;10
& ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 |
|
Theorem | declth 9477 |
Comparing two decimal integers (unequal higher places). (Contributed
by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 |
|
Theorem | decsuc 9478 |
The successor of a decimal integer (no carry). (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ (𝐵 + 1) = 𝐶
& ⊢ 𝑁 = ;𝐴𝐵 ⇒ ⊢ (𝑁 + 1) = ;𝐴𝐶 |
|
Theorem | 3declth 9479 |
Comparing two decimal integers with three "digits" (unequal higher
places). (Contributed by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐴 < 𝐵
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐸 ≤
9 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 |
|
Theorem | 3decltc 9480 |
Comparing two decimal integers with three "digits" (unequal higher
places). (Contributed by AV, 15-Jun-2021.) (Revised by AV,
6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐴 < 𝐵
& ⊢ 𝐶 < ;10
& ⊢ 𝐸 < ;10 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 |
|
Theorem | decle 9481 |
Comparing two decimal integers (equal higher places). (Contributed by
AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐵 ≤ 𝐶 ⇒ ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
|
Theorem | decleh 9482 |
Comparing two decimal integers (unequal higher places). (Contributed by
AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 ≤ ;𝐵𝐷 |
|
Theorem | declei 9483 |
Comparing a digit to a decimal integer. (Contributed by AV,
17-Aug-2021.)
|
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤
9 ⇒ ⊢ 𝐶 ≤ ;𝐴𝐵 |
|
Theorem | numlti 9484 |
Comparing a digit to a decimal integer. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < 𝑇 ⇒ ⊢ 𝐶 < ((𝑇 · 𝐴) + 𝐵) |
|
Theorem | declti 9485 |
Comparing a digit to a decimal integer. (Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < ;10 ⇒ ⊢ 𝐶 < ;𝐴𝐵 |
|
Theorem | decltdi 9486 |
Comparing a digit to a decimal integer. (Contributed by AV,
8-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤
9 ⇒ ⊢ 𝐶 < ;𝐴𝐵 |
|
Theorem | numsucc 9487 |
The successor of a decimal integer (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑌 ∈ ℕ0 & ⊢ 𝑇 = (𝑌 + 1) & ⊢ 𝐴 ∈
ℕ0
& ⊢ (𝐴 + 1) = 𝐵
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
|
Theorem | decsucc 9488 |
The successor of a decimal integer (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵
& ⊢ 𝑁 = ;𝐴9 ⇒ ⊢ (𝑁 + 1) = ;𝐵0 |
|
Theorem | 1e0p1 9489 |
The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.)
|
⊢ 1 = (0 + 1) |
|
Theorem | dec10p 9490 |
Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (;10 + 𝐴) = ;1𝐴 |
|
Theorem | numma 9491 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (no carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | nummac 9492 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | numma2c 9493 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | numadd 9494 |
Add two decimal integers 𝑀 and 𝑁 (no carry).
(Contributed by
Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ (𝐴 + 𝐶) = 𝐸
& ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | numaddc 9495 |
Add two decimal integers 𝑀 and 𝑁 (with carry).
(Contributed
by Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝐹 ∈ ℕ0 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
|
Theorem | nummul1c 9496 |
The product of a decimal integer with a number. (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈
ℕ0
& ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶
& ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
|
Theorem | nummul2c 9497 |
The product of a decimal integer with a number (with carry).
(Contributed by Mario Carneiro, 18-Feb-2014.)
|
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈
ℕ0
& ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶
& ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) |
|
Theorem | decma 9498 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (no carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decmac 9499 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decma2c 9500 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplier 𝑃 (with carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝑃 · 𝐵) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ;𝐸𝐹 |