Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version |
Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
0p1e1 | ⊢ (0 + 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7879 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | addid2i 8074 | 1 ⊢ (0 + 1) = 1 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5865 0cc0 7786 1c1 7787 + caddc 7789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-ext 2157 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-mulcl 7884 ax-addcom 7886 ax-i2m1 7891 ax-0id 7894 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 df-clel 2171 |
This theorem is referenced by: fv0p1e1 9005 zgt0ge1 9282 nn0lt10b 9304 gtndiv 9319 nn0ind-raph 9341 1e0p1 9396 fz01en 10021 fz01or 10079 fz0tp 10090 fz0to3un2pr 10091 elfzonlteqm1 10178 fzo0to2pr 10186 fzo0to3tp 10187 fldiv4p1lem1div2 10273 mulp1mod1 10333 1tonninf 10408 expp1 10495 facp1 10676 faclbnd 10687 bcm1k 10706 bcval5 10709 bcpasc 10712 hash1 10757 binomlem 11457 isumnn0nn 11467 fprodfac 11589 ege2le3 11645 ef4p 11668 eirraplem 11750 p1modz1 11767 nn0o1gt2 11875 pw2dvdslemn 12130 pcfaclem 12312 ennnfonelemjn 12368 exmidunben 12392 lgsne0 13990 012of 14285 2o01f 14286 isomninnlem 14319 iswomninnlem 14338 ismkvnnlem 14341 |
Copyright terms: Public domain | W3C validator |