![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version |
Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
0p1e1 | ⊢ (0 + 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7965 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | addid2i 8162 | 1 ⊢ (0 + 1) = 1 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5918 0cc0 7872 1c1 7873 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-addcom 7972 ax-i2m1 7977 ax-0id 7980 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: fv0p1e1 9097 zgt0ge1 9375 nn0lt10b 9397 gtndiv 9412 nn0ind-raph 9434 1e0p1 9489 fz01en 10119 fz01or 10177 fz0tp 10188 fz0to3un2pr 10189 elfzonlteqm1 10277 fzo0to2pr 10285 fzo0to3tp 10286 fldiv4p1lem1div2 10374 mulp1mod1 10436 1tonninf 10512 expp1 10617 facp1 10801 faclbnd 10812 bcm1k 10831 bcval5 10834 bcpasc 10837 hash1 10882 binomlem 11626 isumnn0nn 11636 fprodfac 11758 ege2le3 11814 ef4p 11837 eirraplem 11920 p1modz1 11937 nn0o1gt2 12046 pw2dvdslemn 12303 pcfaclem 12487 4sqlem19 12547 ennnfonelemjn 12559 exmidunben 12583 gsumfzconst 13411 gsumfzsnfd 13415 lgsne0 15154 gausslemma2dlem4 15180 012of 15486 2o01f 15487 isomninnlem 15520 iswomninnlem 15539 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |