Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version |
Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
0p1e1 | ⊢ (0 + 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7846 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | addid2i 8041 | 1 ⊢ (0 + 1) = 1 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5842 0cc0 7753 1c1 7754 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-addcom 7853 ax-i2m1 7858 ax-0id 7861 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: fv0p1e1 8972 zgt0ge1 9249 nn0lt10b 9271 gtndiv 9286 nn0ind-raph 9308 1e0p1 9363 fz01en 9988 fz01or 10046 fz0tp 10057 fz0to3un2pr 10058 elfzonlteqm1 10145 fzo0to2pr 10153 fzo0to3tp 10154 fldiv4p1lem1div2 10240 mulp1mod1 10300 1tonninf 10375 expp1 10462 facp1 10643 faclbnd 10654 bcm1k 10673 bcval5 10676 bcpasc 10679 hash1 10724 binomlem 11424 isumnn0nn 11434 fprodfac 11556 ege2le3 11612 ef4p 11635 eirraplem 11717 p1modz1 11734 nn0o1gt2 11842 pw2dvdslemn 12097 pcfaclem 12279 ennnfonelemjn 12335 exmidunben 12359 lgsne0 13579 012of 13875 2o01f 13876 isomninnlem 13909 iswomninnlem 13928 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |