| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version | ||
| Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0p1e1 | ⊢ (0 + 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8053 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | addlidi 8250 | 1 ⊢ (0 + 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5967 0cc0 7960 1c1 7961 + caddc 7963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-mulcl 8058 ax-addcom 8060 ax-i2m1 8065 ax-0id 8068 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: fv0p1e1 9186 zgt0ge1 9466 nn0lt10b 9488 gtndiv 9503 nn0ind-raph 9525 1e0p1 9580 fz01en 10210 fz01or 10268 fz0tp 10279 fz0to3un2pr 10280 elfzonlteqm1 10376 fzo0to2pr 10384 fzo0to3tp 10385 fldiv4p1lem1div2 10485 mulp1mod1 10547 1tonninf 10623 expp1 10728 facp1 10912 faclbnd 10923 bcm1k 10942 bcval5 10945 bcpasc 10948 hash1 10993 binomlem 11909 isumnn0nn 11919 fprodfac 12041 ege2le3 12097 ef4p 12120 eirraplem 12203 p1modz1 12220 nn0o1gt2 12331 bitsfzo 12381 pw2dvdslemn 12602 pcfaclem 12787 4sqlem19 12847 2exp16 12875 ennnfonelemjn 12888 exmidunben 12912 gsumfzconst 13792 gsumfzsnfd 13796 dvply1 15352 lgsne0 15630 gausslemma2dlem4 15656 lgsquadlem2 15670 012of 16130 2o01f 16131 isomninnlem 16171 iswomninnlem 16190 ismkvnnlem 16193 |
| Copyright terms: Public domain | W3C validator |