![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version |
Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
0p1e1 | ⊢ (0 + 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7638 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | addid2i 7828 | 1 ⊢ (0 + 1) = 1 |
Colors of variables: wff set class |
Syntax hints: = wceq 1314 (class class class)co 5728 0cc0 7547 1c1 7548 + caddc 7550 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-4 1470 ax-17 1489 ax-ial 1497 ax-ext 2097 ax-1cn 7638 ax-icn 7640 ax-addcl 7641 ax-mulcl 7643 ax-addcom 7645 ax-i2m1 7650 ax-0id 7653 |
This theorem depends on definitions: df-bi 116 df-cleq 2108 df-clel 2111 |
This theorem is referenced by: fv0p1e1 8745 zgt0ge1 9016 nn0lt10b 9035 gtndiv 9050 nn0ind-raph 9072 1e0p1 9127 fz01en 9726 fz01or 9784 fz0tp 9794 elfzonlteqm1 9880 fzo0to2pr 9888 fzo0to3tp 9889 fldiv4p1lem1div2 9971 mulp1mod1 10031 1tonninf 10106 expp1 10193 facp1 10369 faclbnd 10380 bcm1k 10399 bcval5 10402 bcpasc 10405 hash1 10450 binomlem 11144 isumnn0nn 11154 ege2le3 11228 ef4p 11251 eirraplem 11331 nn0o1gt2 11450 pw2dvdslemn 11688 ennnfonelemjn 11760 exmidunben 11784 isomninnlem 12917 |
Copyright terms: Public domain | W3C validator |