![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version |
Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
0p1e1 | ⊢ (0 + 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7967 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | addid2i 8164 | 1 ⊢ (0 + 1) = 1 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 0cc0 7874 1c1 7875 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-addcom 7974 ax-i2m1 7979 ax-0id 7982 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: fv0p1e1 9099 zgt0ge1 9378 nn0lt10b 9400 gtndiv 9415 nn0ind-raph 9437 1e0p1 9492 fz01en 10122 fz01or 10180 fz0tp 10191 fz0to3un2pr 10192 elfzonlteqm1 10280 fzo0to2pr 10288 fzo0to3tp 10289 fldiv4p1lem1div2 10377 mulp1mod1 10439 1tonninf 10515 expp1 10620 facp1 10804 faclbnd 10815 bcm1k 10834 bcval5 10837 bcpasc 10840 hash1 10885 binomlem 11629 isumnn0nn 11639 fprodfac 11761 ege2le3 11817 ef4p 11840 eirraplem 11923 p1modz1 11940 nn0o1gt2 12049 pw2dvdslemn 12306 pcfaclem 12490 4sqlem19 12550 ennnfonelemjn 12562 exmidunben 12586 gsumfzconst 13414 gsumfzsnfd 13418 dvply1 14943 lgsne0 15195 gausslemma2dlem4 15221 lgsquadlem2 15235 012of 15556 2o01f 15557 isomninnlem 15590 iswomninnlem 15609 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |