| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version | ||
| Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0p1e1 | ⊢ (0 + 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8092 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | addlidi 8289 | 1 ⊢ (0 + 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6001 0cc0 7999 1c1 8000 + caddc 8002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-mulcl 8097 ax-addcom 8099 ax-i2m1 8104 ax-0id 8107 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: fv0p1e1 9225 zgt0ge1 9505 nn0lt10b 9527 gtndiv 9542 nn0ind-raph 9564 1e0p1 9619 fz01en 10249 fz01or 10307 fz0tp 10318 fz0to3un2pr 10319 elfzonlteqm1 10416 fzo0to2pr 10424 fzo0to3tp 10425 fldiv4p1lem1div2 10525 mulp1mod1 10587 1tonninf 10663 expp1 10768 facp1 10952 faclbnd 10963 bcm1k 10982 bcval5 10985 bcpasc 10988 hash1 11033 binomlem 11994 isumnn0nn 12004 fprodfac 12126 ege2le3 12182 ef4p 12205 eirraplem 12288 p1modz1 12305 nn0o1gt2 12416 bitsfzo 12466 pw2dvdslemn 12687 pcfaclem 12872 4sqlem19 12932 2exp16 12960 ennnfonelemjn 12973 exmidunben 12997 gsumfzconst 13878 gsumfzsnfd 13882 dvply1 15439 lgsne0 15717 gausslemma2dlem4 15743 lgsquadlem2 15757 wlkl1loop 16069 012of 16357 2o01f 16358 isomninnlem 16398 iswomninnlem 16417 ismkvnnlem 16420 |
| Copyright terms: Public domain | W3C validator |