| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version | ||
| Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0p1e1 | ⊢ (0 + 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8020 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | addlidi 8217 | 1 ⊢ (0 + 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5946 0cc0 7927 1c1 7928 + caddc 7930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-mulcl 8025 ax-addcom 8027 ax-i2m1 8032 ax-0id 8035 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: fv0p1e1 9153 zgt0ge1 9433 nn0lt10b 9455 gtndiv 9470 nn0ind-raph 9492 1e0p1 9547 fz01en 10177 fz01or 10235 fz0tp 10246 fz0to3un2pr 10247 elfzonlteqm1 10341 fzo0to2pr 10349 fzo0to3tp 10350 fldiv4p1lem1div2 10450 mulp1mod1 10512 1tonninf 10588 expp1 10693 facp1 10877 faclbnd 10888 bcm1k 10907 bcval5 10910 bcpasc 10913 hash1 10958 binomlem 11827 isumnn0nn 11837 fprodfac 11959 ege2le3 12015 ef4p 12038 eirraplem 12121 p1modz1 12138 nn0o1gt2 12249 bitsfzo 12299 pw2dvdslemn 12520 pcfaclem 12705 4sqlem19 12765 2exp16 12793 ennnfonelemjn 12806 exmidunben 12830 gsumfzconst 13710 gsumfzsnfd 13714 dvply1 15270 lgsne0 15548 gausslemma2dlem4 15574 lgsquadlem2 15588 012of 15967 2o01f 15968 isomninnlem 16006 iswomninnlem 16025 ismkvnnlem 16028 |
| Copyright terms: Public domain | W3C validator |