| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version | ||
| Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0p1e1 | ⊢ (0 + 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7991 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | addlidi 8188 | 1 ⊢ (0 + 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 0cc0 7898 1c1 7899 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-addcom 7998 ax-i2m1 8003 ax-0id 8006 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: fv0p1e1 9124 zgt0ge1 9403 nn0lt10b 9425 gtndiv 9440 nn0ind-raph 9462 1e0p1 9517 fz01en 10147 fz01or 10205 fz0tp 10216 fz0to3un2pr 10217 elfzonlteqm1 10305 fzo0to2pr 10313 fzo0to3tp 10314 fldiv4p1lem1div2 10414 mulp1mod1 10476 1tonninf 10552 expp1 10657 facp1 10841 faclbnd 10852 bcm1k 10871 bcval5 10874 bcpasc 10877 hash1 10922 binomlem 11667 isumnn0nn 11677 fprodfac 11799 ege2le3 11855 ef4p 11878 eirraplem 11961 p1modz1 11978 nn0o1gt2 12089 bitsfzo 12139 pw2dvdslemn 12360 pcfaclem 12545 4sqlem19 12605 2exp16 12633 ennnfonelemjn 12646 exmidunben 12670 gsumfzconst 13549 gsumfzsnfd 13553 dvply1 15109 lgsne0 15387 gausslemma2dlem4 15413 lgsquadlem2 15427 012of 15748 2o01f 15749 isomninnlem 15787 iswomninnlem 15806 ismkvnnlem 15809 |
| Copyright terms: Public domain | W3C validator |