Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version |
Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
0p1e1 | ⊢ (0 + 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7867 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | addid2i 8062 | 1 ⊢ (0 + 1) = 1 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-addcom 7874 ax-i2m1 7879 ax-0id 7882 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: fv0p1e1 8993 zgt0ge1 9270 nn0lt10b 9292 gtndiv 9307 nn0ind-raph 9329 1e0p1 9384 fz01en 10009 fz01or 10067 fz0tp 10078 fz0to3un2pr 10079 elfzonlteqm1 10166 fzo0to2pr 10174 fzo0to3tp 10175 fldiv4p1lem1div2 10261 mulp1mod1 10321 1tonninf 10396 expp1 10483 facp1 10664 faclbnd 10675 bcm1k 10694 bcval5 10697 bcpasc 10700 hash1 10746 binomlem 11446 isumnn0nn 11456 fprodfac 11578 ege2le3 11634 ef4p 11657 eirraplem 11739 p1modz1 11756 nn0o1gt2 11864 pw2dvdslemn 12119 pcfaclem 12301 ennnfonelemjn 12357 exmidunben 12381 lgsne0 13733 012of 14028 2o01f 14029 isomninnlem 14062 iswomninnlem 14081 ismkvnnlem 14084 |
Copyright terms: Public domain | W3C validator |