| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version | ||
| Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0p1e1 | ⊢ (0 + 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7989 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | addlidi 8186 | 1 ⊢ (0 + 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 0cc0 7896 1c1 7897 + caddc 7899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-addcom 7996 ax-i2m1 8001 ax-0id 8004 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: fv0p1e1 9122 zgt0ge1 9401 nn0lt10b 9423 gtndiv 9438 nn0ind-raph 9460 1e0p1 9515 fz01en 10145 fz01or 10203 fz0tp 10214 fz0to3un2pr 10215 elfzonlteqm1 10303 fzo0to2pr 10311 fzo0to3tp 10312 fldiv4p1lem1div2 10412 mulp1mod1 10474 1tonninf 10550 expp1 10655 facp1 10839 faclbnd 10850 bcm1k 10869 bcval5 10872 bcpasc 10875 hash1 10920 binomlem 11665 isumnn0nn 11675 fprodfac 11797 ege2le3 11853 ef4p 11876 eirraplem 11959 p1modz1 11976 nn0o1gt2 12087 bitsfzo 12137 pw2dvdslemn 12358 pcfaclem 12543 4sqlem19 12603 2exp16 12631 ennnfonelemjn 12644 exmidunben 12668 gsumfzconst 13547 gsumfzsnfd 13551 dvply1 15085 lgsne0 15363 gausslemma2dlem4 15389 lgsquadlem2 15403 012of 15724 2o01f 15725 isomninnlem 15761 iswomninnlem 15780 ismkvnnlem 15783 |
| Copyright terms: Public domain | W3C validator |