| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0p1e1 | GIF version | ||
| Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) | 
| Ref | Expression | 
|---|---|
| 0p1e1 | ⊢ (0 + 1) = 1 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1cn 7972 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | addlidi 8169 | 1 ⊢ (0 + 1) = 1 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-addcom 7979 ax-i2m1 7984 ax-0id 7987 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: fv0p1e1 9105 zgt0ge1 9384 nn0lt10b 9406 gtndiv 9421 nn0ind-raph 9443 1e0p1 9498 fz01en 10128 fz01or 10186 fz0tp 10197 fz0to3un2pr 10198 elfzonlteqm1 10286 fzo0to2pr 10294 fzo0to3tp 10295 fldiv4p1lem1div2 10395 mulp1mod1 10457 1tonninf 10533 expp1 10638 facp1 10822 faclbnd 10833 bcm1k 10852 bcval5 10855 bcpasc 10858 hash1 10903 binomlem 11648 isumnn0nn 11658 fprodfac 11780 ege2le3 11836 ef4p 11859 eirraplem 11942 p1modz1 11959 nn0o1gt2 12070 bitsfzo 12119 pw2dvdslemn 12333 pcfaclem 12518 4sqlem19 12578 2exp16 12606 ennnfonelemjn 12619 exmidunben 12643 gsumfzconst 13471 gsumfzsnfd 13475 dvply1 15001 lgsne0 15279 gausslemma2dlem4 15305 lgsquadlem2 15319 012of 15640 2o01f 15641 isomninnlem 15674 iswomninnlem 15693 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |