ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0p1 GIF version

Theorem mulgnn0p1 13206
Description: Group multiple (exponentiation) operation at a successor, extended to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0p1.b 𝐵 = (Base‘𝐺)
mulgnn0p1.t · = (.g𝐺)
mulgnn0p1.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0p1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))

Proof of Theorem mulgnn0p1
StepHypRef Expression
1 simpr 110 . . 3 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2 simpl3 1004 . . 3 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
3 mulgnn0p1.b . . . 4 𝐵 = (Base‘𝐺)
4 mulgnn0p1.t . . . 4 · = (.g𝐺)
5 mulgnn0p1.p . . . 4 + = (+g𝐺)
63, 4, 5mulgnnp1 13203 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
71, 2, 6syl2anc 411 . 2 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
8 eqid 2193 . . . . . . 7 (0g𝐺) = (0g𝐺)
93, 5, 8mndlid 13019 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
103, 8, 4mulg0 13198 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
1110adantl 277 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
1211oveq1d 5934 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = ((0g𝐺) + 𝑋))
133, 4mulg1 13202 . . . . . . 7 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
1413adantl 277 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (1 · 𝑋) = 𝑋)
159, 12, 143eqtr4rd 2237 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋))
16153adant2 1018 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋))
17 oveq1 5926 . . . . . . 7 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
18 1e0p1 9492 . . . . . . 7 1 = (0 + 1)
1917, 18eqtr4di 2244 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = 1)
2019oveq1d 5934 . . . . 5 (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = (1 · 𝑋))
21 oveq1 5926 . . . . . 6 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
2221oveq1d 5934 . . . . 5 (𝑁 = 0 → ((𝑁 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋))
2320, 22eqeq12d 2208 . . . 4 (𝑁 = 0 → (((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋) ↔ (1 · 𝑋) = ((0 · 𝑋) + 𝑋)))
2416, 23syl5ibrcom 157 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)))
2524imp 124 . 2 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 = 0) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
26 simp2 1000 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → 𝑁 ∈ ℕ0)
27 elnn0 9245 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2826, 27sylib 122 . 2 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
297, 25, 28mpjaodan 799 1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  0cc0 7874  1c1 7875   + caddc 7877  cn 8984  0cn0 9243  Basecbs 12621  +gcplusg 12698  0gc0g 12870  Mndcmnd 13000  .gcmg 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-minusg 13079  df-mulg 13193
This theorem is referenced by:  mulgaddcom  13219  mulginvcom  13220  mulgneg2  13229  mhmmulg  13236  srgmulgass  13488  srgpcomp  13489  srgpcompp  13490  lmodvsmmulgdi  13822  cnfldmulg  14075  cnfldexp  14076
  Copyright terms: Public domain W3C validator