ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0p1 GIF version

Theorem mulgnn0p1 13670
Description: Group multiple (exponentiation) operation at a successor, extended to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0p1.b 𝐵 = (Base‘𝐺)
mulgnn0p1.t · = (.g𝐺)
mulgnn0p1.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0p1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))

Proof of Theorem mulgnn0p1
StepHypRef Expression
1 simpr 110 . . 3 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2 simpl3 1026 . . 3 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
3 mulgnn0p1.b . . . 4 𝐵 = (Base‘𝐺)
4 mulgnn0p1.t . . . 4 · = (.g𝐺)
5 mulgnn0p1.p . . . 4 + = (+g𝐺)
63, 4, 5mulgnnp1 13667 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
71, 2, 6syl2anc 411 . 2 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
8 eqid 2229 . . . . . . 7 (0g𝐺) = (0g𝐺)
93, 5, 8mndlid 13468 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
103, 8, 4mulg0 13662 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
1110adantl 277 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
1211oveq1d 6016 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = ((0g𝐺) + 𝑋))
133, 4mulg1 13666 . . . . . . 7 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
1413adantl 277 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (1 · 𝑋) = 𝑋)
159, 12, 143eqtr4rd 2273 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋))
16153adant2 1040 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋))
17 oveq1 6008 . . . . . . 7 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
18 1e0p1 9619 . . . . . . 7 1 = (0 + 1)
1917, 18eqtr4di 2280 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = 1)
2019oveq1d 6016 . . . . 5 (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = (1 · 𝑋))
21 oveq1 6008 . . . . . 6 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
2221oveq1d 6016 . . . . 5 (𝑁 = 0 → ((𝑁 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋))
2320, 22eqeq12d 2244 . . . 4 (𝑁 = 0 → (((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋) ↔ (1 · 𝑋) = ((0 · 𝑋) + 𝑋)))
2416, 23syl5ibrcom 157 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)))
2524imp 124 . 2 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 = 0) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
26 simp2 1022 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → 𝑁 ∈ ℕ0)
27 elnn0 9371 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2826, 27sylib 122 . 2 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
297, 25, 28mpjaodan 803 1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  w3a 1002   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6001  0cc0 7999  1c1 8000   + caddc 8002  cn 9110  0cn0 9369  Basecbs 13032  +gcplusg 13110  0gc0g 13289  Mndcmnd 13449  .gcmg 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-minusg 13537  df-mulg 13657
This theorem is referenced by:  mulgaddcom  13683  mulginvcom  13684  mulgneg2  13693  mhmmulg  13700  srgmulgass  13952  srgpcomp  13953  srgpcompp  13954  lmodvsmmulgdi  14287  cnfldmulg  14540  cnfldexp  14541
  Copyright terms: Public domain W3C validator