| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnn0p1 | GIF version | ||
| Description: Group multiple (exponentiation) operation at a successor, extended to ℕ0. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0p1.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn0p1.t | ⊢ · = (.g‘𝐺) |
| mulgnn0p1.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgnn0p1 | ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 2 | simpl3 1026 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐵) | |
| 3 | mulgnn0p1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mulgnn0p1.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 5 | mulgnn0p1.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 6 | 3, 4, 5 | mulgnnp1 13667 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| 7 | 1, 2, 6 | syl2anc 411 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| 8 | eqid 2229 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 9 | 3, 5, 8 | mndlid 13468 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ((0g‘𝐺) + 𝑋) = 𝑋) |
| 10 | 3, 8, 4 | mulg0 13662 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
| 11 | 10 | adantl 277 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = (0g‘𝐺)) |
| 12 | 11 | oveq1d 6016 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ((0 · 𝑋) + 𝑋) = ((0g‘𝐺) + 𝑋)) |
| 13 | 3, 4 | mulg1 13666 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
| 14 | 13 | adantl 277 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = 𝑋) |
| 15 | 9, 12, 14 | 3eqtr4rd 2273 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋)) |
| 16 | 15 | 3adant2 1040 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋)) |
| 17 | oveq1 6008 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
| 18 | 1e0p1 9619 | . . . . . . 7 ⊢ 1 = (0 + 1) | |
| 19 | 17, 18 | eqtr4di 2280 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = 1) |
| 20 | 19 | oveq1d 6016 | . . . . 5 ⊢ (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = (1 · 𝑋)) |
| 21 | oveq1 6008 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋)) | |
| 22 | 21 | oveq1d 6016 | . . . . 5 ⊢ (𝑁 = 0 → ((𝑁 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋)) |
| 23 | 20, 22 | eqeq12d 2244 | . . . 4 ⊢ (𝑁 = 0 → (((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋) ↔ (1 · 𝑋) = ((0 · 𝑋) + 𝑋))) |
| 24 | 16, 23 | syl5ibrcom 157 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))) |
| 25 | 24 | imp 124 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 = 0) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| 26 | simp2 1022 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ ℕ0) | |
| 27 | elnn0 9371 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 28 | 26, 27 | sylib 122 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 29 | 7, 25, 28 | mpjaodan 803 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6001 0cc0 7999 1c1 8000 + caddc 8002 ℕcn 9110 ℕ0cn0 9369 Basecbs 13032 +gcplusg 13110 0gc0g 13289 Mndcmnd 13449 .gcmg 13656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-2 9169 df-n0 9370 df-z 9447 df-uz 9723 df-seqfrec 10670 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-minusg 13537 df-mulg 13657 |
| This theorem is referenced by: mulgaddcom 13683 mulginvcom 13684 mulgneg2 13693 mhmmulg 13700 srgmulgass 13952 srgpcomp 13953 srgpcompp 13954 lmodvsmmulgdi 14287 cnfldmulg 14540 cnfldexp 14541 |
| Copyright terms: Public domain | W3C validator |