| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnn0p1 | GIF version | ||
| Description: Group multiple (exponentiation) operation at a successor, extended to ℕ0. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0p1.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn0p1.t | ⊢ · = (.g‘𝐺) |
| mulgnn0p1.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgnn0p1 | ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 2 | simpl3 1004 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐵) | |
| 3 | mulgnn0p1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mulgnn0p1.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 5 | mulgnn0p1.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 6 | 3, 4, 5 | mulgnnp1 13260 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| 7 | 1, 2, 6 | syl2anc 411 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| 8 | eqid 2196 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 9 | 3, 5, 8 | mndlid 13076 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ((0g‘𝐺) + 𝑋) = 𝑋) |
| 10 | 3, 8, 4 | mulg0 13255 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
| 11 | 10 | adantl 277 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = (0g‘𝐺)) |
| 12 | 11 | oveq1d 5937 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ((0 · 𝑋) + 𝑋) = ((0g‘𝐺) + 𝑋)) |
| 13 | 3, 4 | mulg1 13259 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
| 14 | 13 | adantl 277 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = 𝑋) |
| 15 | 9, 12, 14 | 3eqtr4rd 2240 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋)) |
| 16 | 15 | 3adant2 1018 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋)) |
| 17 | oveq1 5929 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
| 18 | 1e0p1 9498 | . . . . . . 7 ⊢ 1 = (0 + 1) | |
| 19 | 17, 18 | eqtr4di 2247 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = 1) |
| 20 | 19 | oveq1d 5937 | . . . . 5 ⊢ (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = (1 · 𝑋)) |
| 21 | oveq1 5929 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋)) | |
| 22 | 21 | oveq1d 5937 | . . . . 5 ⊢ (𝑁 = 0 → ((𝑁 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋)) |
| 23 | 20, 22 | eqeq12d 2211 | . . . 4 ⊢ (𝑁 = 0 → (((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋) ↔ (1 · 𝑋) = ((0 · 𝑋) + 𝑋))) |
| 24 | 16, 23 | syl5ibrcom 157 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))) |
| 25 | 24 | imp 124 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 = 0) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| 26 | simp2 1000 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ ℕ0) | |
| 27 | elnn0 9251 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 28 | 26, 27 | sylib 122 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 29 | 7, 25, 28 | mpjaodan 799 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 ℕcn 8990 ℕ0cn0 9249 Basecbs 12678 +gcplusg 12755 0gc0g 12927 Mndcmnd 13057 .gcmg 13249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-minusg 13136 df-mulg 13250 |
| This theorem is referenced by: mulgaddcom 13276 mulginvcom 13277 mulgneg2 13286 mhmmulg 13293 srgmulgass 13545 srgpcomp 13546 srgpcompp 13547 lmodvsmmulgdi 13879 cnfldmulg 14132 cnfldexp 14133 |
| Copyright terms: Public domain | W3C validator |