ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arisum2 GIF version

Theorem arisum2 11510
Description: Arithmetic series sum of the first 𝑁 nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
arisum2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem arisum2
StepHypRef Expression
1 elnn0 9181 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnm1nn0 9220 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
3 nn0uz 9565 . . . . . 6 0 = (ℤ‘0)
42, 3eleqtrdi 2270 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
5 elfznn0 10117 . . . . . . 7 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
65adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
76nn0cnd 9234 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℂ)
8 id 19 . . . . 5 (𝑘 = 0 → 𝑘 = 0)
94, 7, 8fsum1p 11429 . . . 4 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘))
10 1e0p1 9428 . . . . . . . . 9 1 = (0 + 1)
1110oveq1i 5888 . . . . . . . 8 (1...(𝑁 − 1)) = ((0 + 1)...(𝑁 − 1))
1211sumeq1i 11374 . . . . . . 7 Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘
1312oveq2i 5889 . . . . . 6 (0 + Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘)
14 1zzd 9283 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℤ)
152nn0zd 9376 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
1614, 15fzfigd 10434 . . . . . . . 8 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ∈ Fin)
17 elfznn 10057 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑁 − 1)) → 𝑘 ∈ ℕ)
1817adantl 277 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℕ)
1918nncnd 8936 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℂ)
2016, 19fsumcl 11411 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 ∈ ℂ)
2120addid2d 8110 . . . . . 6 (𝑁 ∈ ℕ → (0 + Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) = Σ𝑘 ∈ (1...(𝑁 − 1))𝑘)
2213, 21eqtr3id 2224 . . . . 5 (𝑁 ∈ ℕ → (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘) = Σ𝑘 ∈ (1...(𝑁 − 1))𝑘)
23 arisum 11509 . . . . . . 7 ((𝑁 − 1) ∈ ℕ0 → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2))
242, 23syl 14 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2))
25 nncn 8930 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
26252timesd 9164 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
2726oveq2d 5894 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁↑2) − (2 · 𝑁)) = ((𝑁↑2) − (𝑁 + 𝑁)))
2825sqcld 10655 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℂ)
2928, 25, 25subsub4d 8302 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁↑2) − 𝑁) − 𝑁) = ((𝑁↑2) − (𝑁 + 𝑁)))
3027, 29eqtr4d 2213 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁↑2) − (2 · 𝑁)) = (((𝑁↑2) − 𝑁) − 𝑁))
3130oveq1d 5893 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((𝑁↑2) − (2 · 𝑁)) + 1) = ((((𝑁↑2) − 𝑁) − 𝑁) + 1))
32 binom2sub1 10638 . . . . . . . . . . 11 (𝑁 ∈ ℂ → ((𝑁 − 1)↑2) = (((𝑁↑2) − (2 · 𝑁)) + 1))
3325, 32syl 14 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 − 1)↑2) = (((𝑁↑2) − (2 · 𝑁)) + 1))
3428, 25subcld 8271 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁↑2) − 𝑁) ∈ ℂ)
35 1cnd 7976 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3634, 25, 35subsubd 8299 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((𝑁↑2) − 𝑁) − (𝑁 − 1)) = ((((𝑁↑2) − 𝑁) − 𝑁) + 1))
3731, 33, 363eqtr4d 2220 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1)↑2) = (((𝑁↑2) − 𝑁) − (𝑁 − 1)))
3837oveq1d 5893 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 − 1)↑2) + (𝑁 − 1)) = ((((𝑁↑2) − 𝑁) − (𝑁 − 1)) + (𝑁 − 1)))
39 ax-1cn 7907 . . . . . . . . . 10 1 ∈ ℂ
40 subcl 8159 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
4125, 39, 40sylancl 413 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
4234, 41npcand 8275 . . . . . . . 8 (𝑁 ∈ ℕ → ((((𝑁↑2) − 𝑁) − (𝑁 − 1)) + (𝑁 − 1)) = ((𝑁↑2) − 𝑁))
4338, 42eqtrd 2210 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 − 1)↑2) + (𝑁 − 1)) = ((𝑁↑2) − 𝑁))
4443oveq1d 5893 . . . . . 6 (𝑁 ∈ ℕ → ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2) = (((𝑁↑2) − 𝑁) / 2))
4524, 44eqtrd 2210 . . . . 5 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
4622, 45eqtrd 2210 . . . 4 (𝑁 ∈ ℕ → (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘) = (((𝑁↑2) − 𝑁) / 2))
479, 46eqtrd 2210 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
48 oveq1 5885 . . . . . . . 8 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
4948oveq2d 5894 . . . . . . 7 (𝑁 = 0 → (0...(𝑁 − 1)) = (0...(0 − 1)))
50 0re 7960 . . . . . . . . 9 0 ∈ ℝ
51 ltm1 8806 . . . . . . . . 9 (0 ∈ ℝ → (0 − 1) < 0)
5250, 51ax-mp 5 . . . . . . . 8 (0 − 1) < 0
53 0z 9267 . . . . . . . . 9 0 ∈ ℤ
54 peano2zm 9294 . . . . . . . . . 10 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
5553, 54ax-mp 5 . . . . . . . . 9 (0 − 1) ∈ ℤ
56 fzn 10045 . . . . . . . . 9 ((0 ∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅))
5753, 55, 56mp2an 426 . . . . . . . 8 ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅)
5852, 57mpbi 145 . . . . . . 7 (0...(0 − 1)) = ∅
5949, 58eqtrdi 2226 . . . . . 6 (𝑁 = 0 → (0...(𝑁 − 1)) = ∅)
6059sumeq1d 11377 . . . . 5 (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = Σ𝑘 ∈ ∅ 𝑘)
61 sum0 11399 . . . . 5 Σ𝑘 ∈ ∅ 𝑘 = 0
6260, 61eqtrdi 2226 . . . 4 (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = 0)
63 sq0i 10615 . . . . . . . 8 (𝑁 = 0 → (𝑁↑2) = 0)
64 id 19 . . . . . . . 8 (𝑁 = 0 → 𝑁 = 0)
6563, 64oveq12d 5896 . . . . . . 7 (𝑁 = 0 → ((𝑁↑2) − 𝑁) = (0 − 0))
66 0m0e0 9034 . . . . . . 7 (0 − 0) = 0
6765, 66eqtrdi 2226 . . . . . 6 (𝑁 = 0 → ((𝑁↑2) − 𝑁) = 0)
6867oveq1d 5893 . . . . 5 (𝑁 = 0 → (((𝑁↑2) − 𝑁) / 2) = (0 / 2))
69 2cn 8993 . . . . . 6 2 ∈ ℂ
70 2ap0 9015 . . . . . 6 2 # 0
7169, 70div0api 8706 . . . . 5 (0 / 2) = 0
7268, 71eqtrdi 2226 . . . 4 (𝑁 = 0 → (((𝑁↑2) − 𝑁) / 2) = 0)
7362, 72eqtr4d 2213 . . 3 (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
7447, 73jaoi 716 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
751, 74sylbi 121 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  c0 3424   class class class wbr 4005  cfv 5218  (class class class)co 5878  cc 7812  cr 7813  0cc0 7814  1c1 7815   + caddc 7817   · cmul 7819   < clt 7995  cmin 8131   / cdiv 8632  cn 8922  2c2 8973  0cn0 9179  cz 9256  cuz 9531  ...cfz 10011  cexp 10522  Σcsu 11364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-fac 10709  df-bc 10731  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator