Proof of Theorem arisum2
| Step | Hyp | Ref
| Expression |
| 1 | | elnn0 9251 |
. 2
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
| 2 | | nnm1nn0 9290 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
| 3 | | nn0uz 9636 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
| 4 | 2, 3 | eleqtrdi 2289 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
(ℤ≥‘0)) |
| 5 | | elfznn0 10189 |
. . . . . . 7
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) |
| 6 | 5 | adantl 277 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0) |
| 7 | 6 | nn0cnd 9304 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℂ) |
| 8 | | id 19 |
. . . . 5
⊢ (𝑘 = 0 → 𝑘 = 0) |
| 9 | 4, 7, 8 | fsum1p 11583 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘)) |
| 10 | | 1e0p1 9498 |
. . . . . . . . 9
⊢ 1 = (0 +
1) |
| 11 | 10 | oveq1i 5932 |
. . . . . . . 8
⊢
(1...(𝑁 − 1))
= ((0 + 1)...(𝑁 −
1)) |
| 12 | 11 | sumeq1i 11528 |
. . . . . . 7
⊢
Σ𝑘 ∈
(1...(𝑁 − 1))𝑘 = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘 |
| 13 | 12 | oveq2i 5933 |
. . . . . 6
⊢ (0 +
Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘) |
| 14 | | 1zzd 9353 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 1 ∈
ℤ) |
| 15 | 2 | nn0zd 9446 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℤ) |
| 16 | 14, 15 | fzfigd 10523 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(1...(𝑁 − 1)) ∈
Fin) |
| 17 | | elfznn 10129 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...(𝑁 − 1)) → 𝑘 ∈ ℕ) |
| 18 | 17 | adantl 277 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℕ) |
| 19 | 18 | nncnd 9004 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℂ) |
| 20 | 16, 19 | fsumcl 11565 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 ∈ ℂ) |
| 21 | 20 | addlidd 8176 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (0 +
Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) = Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) |
| 22 | 13, 21 | eqtr3id 2243 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (0 +
Σ𝑘 ∈ ((0 +
1)...(𝑁 − 1))𝑘) = Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) |
| 23 | | arisum 11663 |
. . . . . . 7
⊢ ((𝑁 − 1) ∈
ℕ0 → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2)) |
| 24 | 2, 23 | syl 14 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2)) |
| 25 | | nncn 8998 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 26 | 25 | 2timesd 9234 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (2
· 𝑁) = (𝑁 + 𝑁)) |
| 27 | 26 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → ((𝑁↑2) − (2 ·
𝑁)) = ((𝑁↑2) − (𝑁 + 𝑁))) |
| 28 | 25 | sqcld 10763 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (𝑁↑2) ∈
ℂ) |
| 29 | 28, 25, 25 | subsub4d 8368 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (((𝑁↑2) − 𝑁) − 𝑁) = ((𝑁↑2) − (𝑁 + 𝑁))) |
| 30 | 27, 29 | eqtr4d 2232 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((𝑁↑2) − (2 ·
𝑁)) = (((𝑁↑2) − 𝑁) − 𝑁)) |
| 31 | 30 | oveq1d 5937 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (((𝑁↑2) − (2 ·
𝑁)) + 1) = ((((𝑁↑2) − 𝑁) − 𝑁) + 1)) |
| 32 | | binom2sub1 10746 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1)↑2) = (((𝑁↑2) − (2 ·
𝑁)) + 1)) |
| 33 | 25, 32 | syl 14 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)↑2) = (((𝑁↑2) − (2 ·
𝑁)) + 1)) |
| 34 | 28, 25 | subcld 8337 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((𝑁↑2) − 𝑁) ∈
ℂ) |
| 35 | | 1cnd 8042 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) |
| 36 | 34, 25, 35 | subsubd 8365 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (((𝑁↑2) − 𝑁) − (𝑁 − 1)) = ((((𝑁↑2) − 𝑁) − 𝑁) + 1)) |
| 37 | 31, 33, 36 | 3eqtr4d 2239 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)↑2) = (((𝑁↑2) − 𝑁) − (𝑁 − 1))) |
| 38 | 37 | oveq1d 5937 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)↑2) + (𝑁 − 1)) = ((((𝑁↑2) − 𝑁) − (𝑁 − 1)) + (𝑁 − 1))) |
| 39 | | ax-1cn 7972 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
| 40 | | subcl 8225 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 −
1) ∈ ℂ) |
| 41 | 25, 39, 40 | sylancl 413 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℂ) |
| 42 | 34, 41 | npcand 8341 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((((𝑁↑2) − 𝑁) − (𝑁 − 1)) + (𝑁 − 1)) = ((𝑁↑2) − 𝑁)) |
| 43 | 38, 42 | eqtrd 2229 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)↑2) + (𝑁 − 1)) = ((𝑁↑2) − 𝑁)) |
| 44 | 43 | oveq1d 5937 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2) = (((𝑁↑2) − 𝑁) / 2)) |
| 45 | 24, 44 | eqtrd 2229 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
| 46 | 22, 45 | eqtrd 2229 |
. . . 4
⊢ (𝑁 ∈ ℕ → (0 +
Σ𝑘 ∈ ((0 +
1)...(𝑁 − 1))𝑘) = (((𝑁↑2) − 𝑁) / 2)) |
| 47 | 9, 46 | eqtrd 2229 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
| 48 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑁 − 1) = (0 −
1)) |
| 49 | 48 | oveq2d 5938 |
. . . . . . 7
⊢ (𝑁 = 0 → (0...(𝑁 − 1)) = (0...(0 −
1))) |
| 50 | | 0re 8026 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
| 51 | | ltm1 8873 |
. . . . . . . . 9
⊢ (0 ∈
ℝ → (0 − 1) < 0) |
| 52 | 50, 51 | ax-mp 5 |
. . . . . . . 8
⊢ (0
− 1) < 0 |
| 53 | | 0z 9337 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
| 54 | | peano2zm 9364 |
. . . . . . . . . 10
⊢ (0 ∈
ℤ → (0 − 1) ∈ ℤ) |
| 55 | 53, 54 | ax-mp 5 |
. . . . . . . . 9
⊢ (0
− 1) ∈ ℤ |
| 56 | | fzn 10117 |
. . . . . . . . 9
⊢ ((0
∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) < 0
↔ (0...(0 − 1)) = ∅)) |
| 57 | 53, 55, 56 | mp2an 426 |
. . . . . . . 8
⊢ ((0
− 1) < 0 ↔ (0...(0 − 1)) = ∅) |
| 58 | 52, 57 | mpbi 145 |
. . . . . . 7
⊢ (0...(0
− 1)) = ∅ |
| 59 | 49, 58 | eqtrdi 2245 |
. . . . . 6
⊢ (𝑁 = 0 → (0...(𝑁 − 1)) =
∅) |
| 60 | 59 | sumeq1d 11531 |
. . . . 5
⊢ (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = Σ𝑘 ∈ ∅ 𝑘) |
| 61 | | sum0 11553 |
. . . . 5
⊢
Σ𝑘 ∈
∅ 𝑘 =
0 |
| 62 | 60, 61 | eqtrdi 2245 |
. . . 4
⊢ (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = 0) |
| 63 | | sq0i 10723 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑁↑2) = 0) |
| 64 | | id 19 |
. . . . . . . 8
⊢ (𝑁 = 0 → 𝑁 = 0) |
| 65 | 63, 64 | oveq12d 5940 |
. . . . . . 7
⊢ (𝑁 = 0 → ((𝑁↑2) − 𝑁) = (0 − 0)) |
| 66 | | 0m0e0 9102 |
. . . . . . 7
⊢ (0
− 0) = 0 |
| 67 | 65, 66 | eqtrdi 2245 |
. . . . . 6
⊢ (𝑁 = 0 → ((𝑁↑2) − 𝑁) = 0) |
| 68 | 67 | oveq1d 5937 |
. . . . 5
⊢ (𝑁 = 0 → (((𝑁↑2) − 𝑁) / 2) = (0 / 2)) |
| 69 | | 2cn 9061 |
. . . . . 6
⊢ 2 ∈
ℂ |
| 70 | | 2ap0 9083 |
. . . . . 6
⊢ 2 #
0 |
| 71 | 69, 70 | div0api 8773 |
. . . . 5
⊢ (0 / 2) =
0 |
| 72 | 68, 71 | eqtrdi 2245 |
. . . 4
⊢ (𝑁 = 0 → (((𝑁↑2) − 𝑁) / 2) = 0) |
| 73 | 62, 72 | eqtr4d 2232 |
. . 3
⊢ (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
| 74 | 47, 73 | jaoi 717 |
. 2
⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
| 75 | 1, 74 | sylbi 121 |
1
⊢ (𝑁 ∈ ℕ0
→ Σ𝑘 ∈
(0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |