ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arisum2 GIF version

Theorem arisum2 11219
Description: Arithmetic series sum of the first 𝑁 nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
arisum2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem arisum2
StepHypRef Expression
1 elnn0 8933 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnm1nn0 8972 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
3 nn0uz 9312 . . . . . 6 0 = (ℤ‘0)
42, 3syl6eleq 2208 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
5 elfznn0 9845 . . . . . . 7 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
65adantl 273 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
76nn0cnd 8986 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℂ)
8 id 19 . . . . 5 (𝑘 = 0 → 𝑘 = 0)
94, 7, 8fsum1p 11138 . . . 4 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘))
10 1e0p1 9177 . . . . . . . . 9 1 = (0 + 1)
1110oveq1i 5750 . . . . . . . 8 (1...(𝑁 − 1)) = ((0 + 1)...(𝑁 − 1))
1211sumeq1i 11083 . . . . . . 7 Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘
1312oveq2i 5751 . . . . . 6 (0 + Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘)
14 1zzd 9035 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℤ)
152nn0zd 9125 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
1614, 15fzfigd 10155 . . . . . . . 8 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ∈ Fin)
17 elfznn 9785 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑁 − 1)) → 𝑘 ∈ ℕ)
1817adantl 273 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℕ)
1918nncnd 8694 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℂ)
2016, 19fsumcl 11120 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 ∈ ℂ)
2120addid2d 7876 . . . . . 6 (𝑁 ∈ ℕ → (0 + Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) = Σ𝑘 ∈ (1...(𝑁 − 1))𝑘)
2213, 21syl5eqr 2162 . . . . 5 (𝑁 ∈ ℕ → (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘) = Σ𝑘 ∈ (1...(𝑁 − 1))𝑘)
23 arisum 11218 . . . . . . 7 ((𝑁 − 1) ∈ ℕ0 → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2))
242, 23syl 14 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2))
25 nncn 8688 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
26252timesd 8916 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
2726oveq2d 5756 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁↑2) − (2 · 𝑁)) = ((𝑁↑2) − (𝑁 + 𝑁)))
2825sqcld 10373 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℂ)
2928, 25, 25subsub4d 8068 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁↑2) − 𝑁) − 𝑁) = ((𝑁↑2) − (𝑁 + 𝑁)))
3027, 29eqtr4d 2151 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁↑2) − (2 · 𝑁)) = (((𝑁↑2) − 𝑁) − 𝑁))
3130oveq1d 5755 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((𝑁↑2) − (2 · 𝑁)) + 1) = ((((𝑁↑2) − 𝑁) − 𝑁) + 1))
32 binom2sub1 10357 . . . . . . . . . . 11 (𝑁 ∈ ℂ → ((𝑁 − 1)↑2) = (((𝑁↑2) − (2 · 𝑁)) + 1))
3325, 32syl 14 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 − 1)↑2) = (((𝑁↑2) − (2 · 𝑁)) + 1))
3428, 25subcld 8037 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁↑2) − 𝑁) ∈ ℂ)
35 1cnd 7746 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3634, 25, 35subsubd 8065 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((𝑁↑2) − 𝑁) − (𝑁 − 1)) = ((((𝑁↑2) − 𝑁) − 𝑁) + 1))
3731, 33, 363eqtr4d 2158 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1)↑2) = (((𝑁↑2) − 𝑁) − (𝑁 − 1)))
3837oveq1d 5755 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 − 1)↑2) + (𝑁 − 1)) = ((((𝑁↑2) − 𝑁) − (𝑁 − 1)) + (𝑁 − 1)))
39 ax-1cn 7677 . . . . . . . . . 10 1 ∈ ℂ
40 subcl 7925 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
4125, 39, 40sylancl 407 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
4234, 41npcand 8041 . . . . . . . 8 (𝑁 ∈ ℕ → ((((𝑁↑2) − 𝑁) − (𝑁 − 1)) + (𝑁 − 1)) = ((𝑁↑2) − 𝑁))
4338, 42eqtrd 2148 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 − 1)↑2) + (𝑁 − 1)) = ((𝑁↑2) − 𝑁))
4443oveq1d 5755 . . . . . 6 (𝑁 ∈ ℕ → ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2) = (((𝑁↑2) − 𝑁) / 2))
4524, 44eqtrd 2148 . . . . 5 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
4622, 45eqtrd 2148 . . . 4 (𝑁 ∈ ℕ → (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘) = (((𝑁↑2) − 𝑁) / 2))
479, 46eqtrd 2148 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
48 oveq1 5747 . . . . . . . 8 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
4948oveq2d 5756 . . . . . . 7 (𝑁 = 0 → (0...(𝑁 − 1)) = (0...(0 − 1)))
50 0re 7730 . . . . . . . . 9 0 ∈ ℝ
51 ltm1 8564 . . . . . . . . 9 (0 ∈ ℝ → (0 − 1) < 0)
5250, 51ax-mp 5 . . . . . . . 8 (0 − 1) < 0
53 0z 9019 . . . . . . . . 9 0 ∈ ℤ
54 peano2zm 9046 . . . . . . . . . 10 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
5553, 54ax-mp 5 . . . . . . . . 9 (0 − 1) ∈ ℤ
56 fzn 9773 . . . . . . . . 9 ((0 ∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅))
5753, 55, 56mp2an 420 . . . . . . . 8 ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅)
5852, 57mpbi 144 . . . . . . 7 (0...(0 − 1)) = ∅
5949, 58syl6eq 2164 . . . . . 6 (𝑁 = 0 → (0...(𝑁 − 1)) = ∅)
6059sumeq1d 11086 . . . . 5 (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = Σ𝑘 ∈ ∅ 𝑘)
61 sum0 11108 . . . . 5 Σ𝑘 ∈ ∅ 𝑘 = 0
6260, 61syl6eq 2164 . . . 4 (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = 0)
63 sq0i 10335 . . . . . . . 8 (𝑁 = 0 → (𝑁↑2) = 0)
64 id 19 . . . . . . . 8 (𝑁 = 0 → 𝑁 = 0)
6563, 64oveq12d 5758 . . . . . . 7 (𝑁 = 0 → ((𝑁↑2) − 𝑁) = (0 − 0))
66 0m0e0 8792 . . . . . . 7 (0 − 0) = 0
6765, 66syl6eq 2164 . . . . . 6 (𝑁 = 0 → ((𝑁↑2) − 𝑁) = 0)
6867oveq1d 5755 . . . . 5 (𝑁 = 0 → (((𝑁↑2) − 𝑁) / 2) = (0 / 2))
69 2cn 8751 . . . . . 6 2 ∈ ℂ
70 2ap0 8773 . . . . . 6 2 # 0
7169, 70div0api 8469 . . . . 5 (0 / 2) = 0
7268, 71syl6eq 2164 . . . 4 (𝑁 = 0 → (((𝑁↑2) − 𝑁) / 2) = 0)
7362, 72eqtr4d 2151 . . 3 (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
7447, 73jaoi 688 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
751, 74sylbi 120 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 680   = wceq 1314  wcel 1463  c0 3331   class class class wbr 3897  cfv 5091  (class class class)co 5740  cc 7582  cr 7583  0cc0 7584  1c1 7585   + caddc 7587   · cmul 7589   < clt 7764  cmin 7897   / cdiv 8395  cn 8680  2c2 8731  0cn0 8931  cz 9008  cuz 9278  ...cfz 9741  cexp 10243  Σcsu 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-frec 6254  df-1o 6279  df-oadd 6283  df-er 6395  df-en 6601  df-dom 6602  df-fin 6603  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-n0 8932  df-z 9009  df-uz 9279  df-q 9364  df-rp 9394  df-fz 9742  df-fzo 9871  df-seqfrec 10170  df-exp 10244  df-fac 10423  df-bc 10445  df-ihash 10473  df-cj 10565  df-re 10566  df-im 10567  df-rsqrt 10721  df-abs 10722  df-clim 10999  df-sumdc 11074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator