![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzo01 | GIF version |
Description: Expressing the singleton of 0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fzo01 | ⊢ (0..^1) = {0} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1e0p1 8916 | . . 3 ⊢ 1 = (0 + 1) | |
2 | 1 | oveq2i 5663 | . 2 ⊢ (0..^1) = (0..^(0 + 1)) |
3 | 0z 8759 | . . 3 ⊢ 0 ∈ ℤ | |
4 | fzosn 9612 | . . 3 ⊢ (0 ∈ ℤ → (0..^(0 + 1)) = {0}) | |
5 | 3, 4 | ax-mp 7 | . 2 ⊢ (0..^(0 + 1)) = {0} |
6 | 2, 5 | eqtri 2108 | 1 ⊢ (0..^1) = {0} |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∈ wcel 1438 {csn 3446 (class class class)co 5652 0cc0 7348 1c1 7349 + caddc 7351 ℤcz 8748 ..^cfzo 9549 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7434 ax-resscn 7435 ax-1cn 7436 ax-1re 7437 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-addcom 7443 ax-addass 7445 ax-distr 7447 ax-i2m1 7448 ax-0lt1 7449 ax-0id 7451 ax-rnegex 7452 ax-cnre 7454 ax-pre-ltirr 7455 ax-pre-ltwlin 7456 ax-pre-lttrn 7457 ax-pre-apti 7458 ax-pre-ltadd 7459 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-pnf 7522 df-mnf 7523 df-xr 7524 df-ltxr 7525 df-le 7526 df-sub 7653 df-neg 7654 df-inn 8421 df-n0 8672 df-z 8749 df-uz 9018 df-fz 9423 df-fzo 9550 |
This theorem is referenced by: fzo0sn0fzo1 9628 dfphi2 11470 |
Copyright terms: Public domain | W3C validator |