ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decsucc GIF version

Theorem decsucc 9559
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decsucc.1 𝐴 ∈ ℕ0
decsucc.2 (𝐴 + 1) = 𝐵
decsucc.3 𝑁 = 𝐴9
Assertion
Ref Expression
decsucc (𝑁 + 1) = 𝐵0

Proof of Theorem decsucc
StepHypRef Expression
1 9nn0 9334 . . 3 9 ∈ ℕ0
2 9p1e10 9521 . . . 4 (9 + 1) = 10
32eqcomi 2210 . . 3 10 = (9 + 1)
4 decsucc.1 . . 3 𝐴 ∈ ℕ0
5 decsucc.2 . . 3 (𝐴 + 1) = 𝐵
6 decsucc.3 . . . 4 𝑁 = 𝐴9
7 dfdec10 9522 . . . 4 𝐴9 = ((10 · 𝐴) + 9)
86, 7eqtri 2227 . . 3 𝑁 = ((10 · 𝐴) + 9)
91, 3, 4, 5, 8numsucc 9558 . 2 (𝑁 + 1) = ((10 · 𝐵) + 0)
10 dfdec10 9522 . 2 𝐵0 = ((10 · 𝐵) + 0)
119, 10eqtr4i 2230 1 (𝑁 + 1) = 𝐵0
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  (class class class)co 5956  0cc0 7940  1c1 7941   + caddc 7943   · cmul 7945  9c9 9109  0cn0 9310  cdc 9519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-iota 5240  df-fun 5281  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-sub 8260  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-5 9113  df-6 9114  df-7 9115  df-8 9116  df-9 9117  df-n0 9311  df-dec 9520
This theorem is referenced by:  sq10e99m1  10875
  Copyright terms: Public domain W3C validator