ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decsucc GIF version

Theorem decsucc 9497
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decsucc.1 𝐴 ∈ ℕ0
decsucc.2 (𝐴 + 1) = 𝐵
decsucc.3 𝑁 = 𝐴9
Assertion
Ref Expression
decsucc (𝑁 + 1) = 𝐵0

Proof of Theorem decsucc
StepHypRef Expression
1 9nn0 9273 . . 3 9 ∈ ℕ0
2 9p1e10 9459 . . . 4 (9 + 1) = 10
32eqcomi 2200 . . 3 10 = (9 + 1)
4 decsucc.1 . . 3 𝐴 ∈ ℕ0
5 decsucc.2 . . 3 (𝐴 + 1) = 𝐵
6 decsucc.3 . . . 4 𝑁 = 𝐴9
7 dfdec10 9460 . . . 4 𝐴9 = ((10 · 𝐴) + 9)
86, 7eqtri 2217 . . 3 𝑁 = ((10 · 𝐴) + 9)
91, 3, 4, 5, 8numsucc 9496 . 2 (𝑁 + 1) = ((10 · 𝐵) + 0)
10 dfdec10 9460 . 2 𝐵0 = ((10 · 𝐵) + 0)
119, 10eqtr4i 2220 1 (𝑁 + 1) = 𝐵0
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5922  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  9c9 9048  0cn0 9249  cdc 9457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-dec 9458
This theorem is referenced by:  sq10e99m1  10805
  Copyright terms: Public domain W3C validator