![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3optocl | GIF version |
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
3optocl.1 | ⊢ 𝑅 = (𝐷 × 𝐹) |
3optocl.2 | ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑 ↔ 𝜓)) |
3optocl.3 | ⊢ (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓 ↔ 𝜒)) |
3optocl.4 | ⊢ (⟨𝑣, 𝑢⟩ = 𝐶 → (𝜒 ↔ 𝜃)) |
3optocl.5 | ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹)) → 𝜑) |
Ref | Expression |
---|---|
3optocl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑅) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3optocl.1 | . . . 4 ⊢ 𝑅 = (𝐷 × 𝐹) | |
2 | 3optocl.4 | . . . . 5 ⊢ (⟨𝑣, 𝑢⟩ = 𝐶 → (𝜒 ↔ 𝜃)) | |
3 | 2 | imbi2d 230 | . . . 4 ⊢ (⟨𝑣, 𝑢⟩ = 𝐶 → (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜃))) |
4 | 3optocl.2 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | imbi2d 230 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜑) ↔ ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜓))) |
6 | 3optocl.3 | . . . . . . 7 ⊢ (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓 ↔ 𝜒)) | |
7 | 6 | imbi2d 230 | . . . . . 6 ⊢ (⟨𝑧, 𝑤⟩ = 𝐵 → (((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜓) ↔ ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜒))) |
8 | 3optocl.5 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹)) → 𝜑) | |
9 | 8 | 3expia 1205 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹)) → ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜑)) |
10 | 1, 5, 7, 9 | 2optocl 4705 | . . . . 5 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜒)) |
11 | 10 | com12 30 | . . . 4 ⊢ ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒)) |
12 | 1, 3, 11 | optocl 4704 | . . 3 ⊢ (𝐶 ∈ 𝑅 → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜃)) |
13 | 12 | impcom 125 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) ∧ 𝐶 ∈ 𝑅) → 𝜃) |
14 | 13 | 3impa 1194 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑅) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 × cxp 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-xp 4634 |
This theorem is referenced by: ecopovtrn 6634 ecopovtrng 6637 |
Copyright terms: Public domain | W3C validator |