![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3optocl | GIF version |
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
3optocl.1 | ⊢ 𝑅 = (𝐷 × 𝐹) |
3optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) |
3optocl.3 | ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) |
3optocl.4 | ⊢ (〈𝑣, 𝑢〉 = 𝐶 → (𝜒 ↔ 𝜃)) |
3optocl.5 | ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹)) → 𝜑) |
Ref | Expression |
---|---|
3optocl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑅) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3optocl.1 | . . . 4 ⊢ 𝑅 = (𝐷 × 𝐹) | |
2 | 3optocl.4 | . . . . 5 ⊢ (〈𝑣, 𝑢〉 = 𝐶 → (𝜒 ↔ 𝜃)) | |
3 | 2 | imbi2d 229 | . . . 4 ⊢ (〈𝑣, 𝑢〉 = 𝐶 → (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜃))) |
4 | 3optocl.2 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | imbi2d 229 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜑) ↔ ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜓))) |
6 | 3optocl.3 | . . . . . . 7 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) | |
7 | 6 | imbi2d 229 | . . . . . 6 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜓) ↔ ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜒))) |
8 | 3optocl.5 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹)) → 𝜑) | |
9 | 8 | 3expia 1166 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹)) → ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜑)) |
10 | 1, 5, 7, 9 | 2optocl 4576 | . . . . 5 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜒)) |
11 | 10 | com12 30 | . . . 4 ⊢ ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒)) |
12 | 1, 3, 11 | optocl 4575 | . . 3 ⊢ (𝐶 ∈ 𝑅 → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜃)) |
13 | 12 | impcom 124 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) ∧ 𝐶 ∈ 𝑅) → 𝜃) |
14 | 13 | 3impa 1159 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑅) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 〈cop 3496 × cxp 4497 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-opab 3950 df-xp 4505 |
This theorem is referenced by: ecopovtrn 6480 ecopovtrng 6483 |
Copyright terms: Public domain | W3C validator |