ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3optocl GIF version

Theorem 3optocl 4741
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
Hypotheses
Ref Expression
3optocl.1 𝑅 = (𝐷 × 𝐹)
3optocl.2 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
3optocl.3 (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))
3optocl.4 (⟨𝑣, 𝑢⟩ = 𝐶 → (𝜒𝜃))
3optocl.5 (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹) ∧ (𝑣𝐷𝑢𝐹)) → 𝜑)
Assertion
Ref Expression
3optocl ((𝐴𝑅𝐵𝑅𝐶𝑅) → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑧,𝐵,𝑤,𝑣,𝑢   𝑣,𝐶,𝑢   𝑥,𝐷,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐹,𝑦,𝑧,𝑤,𝑣,𝑢   𝑧,𝑅,𝑤,𝑣,𝑢   𝜓,𝑥,𝑦   𝜒,𝑧,𝑤   𝜃,𝑣,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝜓(𝑧,𝑤,𝑣,𝑢)   𝜒(𝑥,𝑦,𝑣,𝑢)   𝜃(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)

Proof of Theorem 3optocl
StepHypRef Expression
1 3optocl.1 . . . 4 𝑅 = (𝐷 × 𝐹)
2 3optocl.4 . . . . 5 (⟨𝑣, 𝑢⟩ = 𝐶 → (𝜒𝜃))
32imbi2d 230 . . . 4 (⟨𝑣, 𝑢⟩ = 𝐶 → (((𝐴𝑅𝐵𝑅) → 𝜒) ↔ ((𝐴𝑅𝐵𝑅) → 𝜃)))
4 3optocl.2 . . . . . . 7 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
54imbi2d 230 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴 → (((𝑣𝐷𝑢𝐹) → 𝜑) ↔ ((𝑣𝐷𝑢𝐹) → 𝜓)))
6 3optocl.3 . . . . . . 7 (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))
76imbi2d 230 . . . . . 6 (⟨𝑧, 𝑤⟩ = 𝐵 → (((𝑣𝐷𝑢𝐹) → 𝜓) ↔ ((𝑣𝐷𝑢𝐹) → 𝜒)))
8 3optocl.5 . . . . . . 7 (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹) ∧ (𝑣𝐷𝑢𝐹)) → 𝜑)
983expia 1207 . . . . . 6 (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹)) → ((𝑣𝐷𝑢𝐹) → 𝜑))
101, 5, 7, 92optocl 4740 . . . . 5 ((𝐴𝑅𝐵𝑅) → ((𝑣𝐷𝑢𝐹) → 𝜒))
1110com12 30 . . . 4 ((𝑣𝐷𝑢𝐹) → ((𝐴𝑅𝐵𝑅) → 𝜒))
121, 3, 11optocl 4739 . . 3 (𝐶𝑅 → ((𝐴𝑅𝐵𝑅) → 𝜃))
1312impcom 125 . 2 (((𝐴𝑅𝐵𝑅) ∧ 𝐶𝑅) → 𝜃)
14133impa 1196 1 ((𝐴𝑅𝐵𝑅𝐶𝑅) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  cop 3625   × cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669
This theorem is referenced by:  ecopovtrn  6691  ecopovtrng  6694
  Copyright terms: Public domain W3C validator