ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3optocl GIF version

Theorem 3optocl 4706
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
Hypotheses
Ref Expression
3optocl.1 𝑅 = (𝐷 × 𝐹)
3optocl.2 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
3optocl.3 (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))
3optocl.4 (⟨𝑣, 𝑢⟩ = 𝐶 → (𝜒𝜃))
3optocl.5 (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹) ∧ (𝑣𝐷𝑢𝐹)) → 𝜑)
Assertion
Ref Expression
3optocl ((𝐴𝑅𝐵𝑅𝐶𝑅) → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑧,𝐵,𝑤,𝑣,𝑢   𝑣,𝐶,𝑢   𝑥,𝐷,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐹,𝑦,𝑧,𝑤,𝑣,𝑢   𝑧,𝑅,𝑤,𝑣,𝑢   𝜓,𝑥,𝑦   𝜒,𝑧,𝑤   𝜃,𝑣,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝜓(𝑧,𝑤,𝑣,𝑢)   𝜒(𝑥,𝑦,𝑣,𝑢)   𝜃(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)

Proof of Theorem 3optocl
StepHypRef Expression
1 3optocl.1 . . . 4 𝑅 = (𝐷 × 𝐹)
2 3optocl.4 . . . . 5 (⟨𝑣, 𝑢⟩ = 𝐶 → (𝜒𝜃))
32imbi2d 230 . . . 4 (⟨𝑣, 𝑢⟩ = 𝐶 → (((𝐴𝑅𝐵𝑅) → 𝜒) ↔ ((𝐴𝑅𝐵𝑅) → 𝜃)))
4 3optocl.2 . . . . . . 7 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
54imbi2d 230 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴 → (((𝑣𝐷𝑢𝐹) → 𝜑) ↔ ((𝑣𝐷𝑢𝐹) → 𝜓)))
6 3optocl.3 . . . . . . 7 (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))
76imbi2d 230 . . . . . 6 (⟨𝑧, 𝑤⟩ = 𝐵 → (((𝑣𝐷𝑢𝐹) → 𝜓) ↔ ((𝑣𝐷𝑢𝐹) → 𝜒)))
8 3optocl.5 . . . . . . 7 (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹) ∧ (𝑣𝐷𝑢𝐹)) → 𝜑)
983expia 1205 . . . . . 6 (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹)) → ((𝑣𝐷𝑢𝐹) → 𝜑))
101, 5, 7, 92optocl 4705 . . . . 5 ((𝐴𝑅𝐵𝑅) → ((𝑣𝐷𝑢𝐹) → 𝜒))
1110com12 30 . . . 4 ((𝑣𝐷𝑢𝐹) → ((𝐴𝑅𝐵𝑅) → 𝜒))
121, 3, 11optocl 4704 . . 3 (𝐶𝑅 → ((𝐴𝑅𝐵𝑅) → 𝜃))
1312impcom 125 . 2 (((𝐴𝑅𝐵𝑅) ∧ 𝐶𝑅) → 𝜃)
14133impa 1194 1 ((𝐴𝑅𝐵𝑅𝐶𝑅) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  cop 3597   × cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-xp 4634
This theorem is referenced by:  ecopovtrn  6634  ecopovtrng  6637
  Copyright terms: Public domain W3C validator