ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettxlem GIF version

Theorem xmettxlem 13303
Description: Lemma for xmettx 13304. (Contributed by Jim Kingdon, 15-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
xmetxp.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
xmetxp.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
xmettx.j 𝐽 = (MetOpen‘𝑀)
xmettx.k 𝐾 = (MetOpen‘𝑁)
xmettx.l 𝐿 = (MetOpen‘𝑃)
Assertion
Ref Expression
xmettxlem (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
Distinct variable groups:   𝑢,𝑀,𝑣   𝑢,𝑁,𝑣   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝑃(𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑣,𝑢)   𝐿(𝑣,𝑢)

Proof of Theorem xmettxlem
Dummy variables 𝑝 𝑟 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . . . . . . 9 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
2 xmetxp.1 . . . . . . . . 9 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 xmetxp.2 . . . . . . . . 9 (𝜑𝑁 ∈ (∞Met‘𝑌))
41, 2, 3xmetxp 13301 . . . . . . . 8 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
5 blrn 13206 . . . . . . . 8 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝)))
64, 5syl 14 . . . . . . 7 (𝜑 → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝)))
76biimpa 294 . . . . . 6 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝))
8 xmettx.j . . . . . . . . . . . . . . 15 𝐽 = (MetOpen‘𝑀)
98mopntop 13238 . . . . . . . . . . . . . 14 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
102, 9syl 14 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
11 xmettx.k . . . . . . . . . . . . . . 15 𝐾 = (MetOpen‘𝑁)
1211mopntop 13238 . . . . . . . . . . . . . 14 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ Top)
133, 12syl 14 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Top)
14 mpoexga 6191 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1510, 13, 14syl2anc 409 . . . . . . . . . . . 12 (𝜑 → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
16 rnexg 4876 . . . . . . . . . . . 12 ((𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1715, 16syl 14 . . . . . . . . . . 11 (𝜑 → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1817ad3antrrr 489 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
19 bastg 12855 . . . . . . . . . 10 (ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
2018, 19syl 14 . . . . . . . . 9 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
212ad3antrrr 489 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑀 ∈ (∞Met‘𝑋))
22 simplrl 530 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑧 ∈ (𝑋 × 𝑌))
23 xp1st 6144 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑌) → (1st𝑧) ∈ 𝑋)
2422, 23syl 14 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (1st𝑧) ∈ 𝑋)
25 simplrr 531 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑝 ∈ ℝ*)
268blopn 13284 . . . . . . . . . . . 12 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝑧) ∈ 𝑋𝑝 ∈ ℝ*) → ((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽)
2721, 24, 25, 26syl3anc 1233 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽)
283ad3antrrr 489 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑁 ∈ (∞Met‘𝑌))
29 xp2nd 6145 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑌) → (2nd𝑧) ∈ 𝑌)
3022, 29syl 14 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (2nd𝑧) ∈ 𝑌)
3111blopn 13284 . . . . . . . . . . . 12 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝑧) ∈ 𝑌𝑝 ∈ ℝ*) → ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾)
3228, 30, 25, 31syl3anc 1233 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾)
33 simpr 109 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (𝑧(ball‘𝑃)𝑝))
341, 21, 28, 25, 22xmetxpbl 13302 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (𝑧(ball‘𝑃)𝑝) = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
3533, 34eqtrd 2203 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
36 xpeq1 4625 . . . . . . . . . . . . 13 (𝑟 = ((1st𝑧)(ball‘𝑀)𝑝) → (𝑟 × 𝑠) = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠))
3736eqeq2d 2182 . . . . . . . . . . . 12 (𝑟 = ((1st𝑧)(ball‘𝑀)𝑝) → (𝑤 = (𝑟 × 𝑠) ↔ 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠)))
38 xpeq2 4626 . . . . . . . . . . . . 13 (𝑠 = ((2nd𝑧)(ball‘𝑁)𝑝) → (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠) = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
3938eqeq2d 2182 . . . . . . . . . . . 12 (𝑠 = ((2nd𝑧)(ball‘𝑁)𝑝) → (𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠) ↔ 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝))))
4037, 39rspc2ev 2849 . . . . . . . . . . 11 ((((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽 ∧ ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝))) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
4127, 32, 35, 40syl3anc 1233 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
42 eqid 2170 . . . . . . . . . . . 12 (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
4342elrnmpog 5965 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠)))
4443elv 2734 . . . . . . . . . 10 (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
4541, 44sylibr 133 . . . . . . . . 9 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))
4620, 45sseldd 3148 . . . . . . . 8 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
4746ex 114 . . . . . . 7 (((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) → (𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
4847rexlimdvva 2595 . . . . . 6 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → (∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
497, 48mpd 13 . . . . 5 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
5049ex 114 . . . 4 (𝜑 → (𝑤 ∈ ran (ball‘𝑃) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5150ssrdv 3153 . . 3 (𝜑 → ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
52 blex 13181 . . . . 5 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (ball‘𝑃) ∈ V)
53 rnexg 4876 . . . . 5 ((ball‘𝑃) ∈ V → ran (ball‘𝑃) ∈ V)
544, 52, 533syl 17 . . . 4 (𝜑 → ran (ball‘𝑃) ∈ V)
55 tgss3 12872 . . . 4 ((ran (ball‘𝑃) ∈ V ∧ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V) → ((topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5654, 17, 55syl2anc 409 . . 3 (𝜑 → ((topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5751, 56mpbird 166 . 2 (𝜑 → (topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
58 xmettx.l . . . 4 𝐿 = (MetOpen‘𝑃)
5958mopnval 13236 . . 3 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → 𝐿 = (topGen‘ran (ball‘𝑃)))
604, 59syl 14 . 2 (𝜑𝐿 = (topGen‘ran (ball‘𝑃)))
61 eqid 2170 . . . 4 ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
6261txval 13049 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
6310, 13, 62syl2anc 409 . 2 (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
6457, 60, 633sstr4d 3192 1 (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wrex 2449  Vcvv 2730  wss 3121  {cpr 3584   × cxp 4609  ran crn 4612  cfv 5198  (class class class)co 5853  cmpo 5855  1st c1st 6117  2nd c2nd 6118  supcsup 6959  *cxr 7953   < clt 7954  topGenctg 12594  ∞Metcxmet 12774  ballcbl 12776  MetOpencmopn 12779  Topctop 12789   ×t ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-tx 13047
This theorem is referenced by:  xmettx  13304
  Copyright terms: Public domain W3C validator