Step | Hyp | Ref
| Expression |
1 | | xmetxp.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
)) |
2 | | xmetxp.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
3 | | xmetxp.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
4 | 1, 2, 3 | xmetxp 13147 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) |
5 | | blrn 13052 |
. . . . . . . 8
⊢ (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝))) |
6 | 4, 5 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝))) |
7 | 6 | biimpa 294 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) → ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝)) |
8 | | xmettx.j |
. . . . . . . . . . . . . . 15
⊢ 𝐽 = (MetOpen‘𝑀) |
9 | 8 | mopntop 13084 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
10 | 2, 9 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ Top) |
11 | | xmettx.k |
. . . . . . . . . . . . . . 15
⊢ 𝐾 = (MetOpen‘𝑁) |
12 | 11 | mopntop 13084 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ Top) |
13 | 3, 12 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ Top) |
14 | | mpoexga 6180 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) |
15 | 10, 13, 14 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) |
16 | | rnexg 4869 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) |
17 | 15, 16 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) |
18 | 17 | ad3antrrr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) |
19 | | bastg 12701 |
. . . . . . . . . 10
⊢ (ran
(𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
20 | 18, 19 | syl 14 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
21 | 2 | ad3antrrr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑀 ∈ (∞Met‘𝑋)) |
22 | | simplrl 525 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑧 ∈ (𝑋 × 𝑌)) |
23 | | xp1st 6133 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (1st ‘𝑧) ∈ 𝑋) |
24 | 22, 23 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (1st ‘𝑧) ∈ 𝑋) |
25 | | simplrr 526 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑝 ∈ ℝ*) |
26 | 8 | blopn 13130 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st
‘𝑧) ∈ 𝑋 ∧ 𝑝 ∈ ℝ*) →
((1st ‘𝑧)(ball‘𝑀)𝑝) ∈ 𝐽) |
27 | 21, 24, 25, 26 | syl3anc 1228 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((1st ‘𝑧)(ball‘𝑀)𝑝) ∈ 𝐽) |
28 | 3 | ad3antrrr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑁 ∈ (∞Met‘𝑌)) |
29 | | xp2nd 6134 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (2nd ‘𝑧) ∈ 𝑌) |
30 | 22, 29 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (2nd ‘𝑧) ∈ 𝑌) |
31 | 11 | blopn 13130 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd
‘𝑧) ∈ 𝑌 ∧ 𝑝 ∈ ℝ*) →
((2nd ‘𝑧)(ball‘𝑁)𝑝) ∈ 𝐾) |
32 | 28, 30, 25, 31 | syl3anc 1228 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((2nd ‘𝑧)(ball‘𝑁)𝑝) ∈ 𝐾) |
33 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (𝑧(ball‘𝑃)𝑝)) |
34 | 1, 21, 28, 25, 22 | xmetxpbl 13148 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (𝑧(ball‘𝑃)𝑝) = (((1st ‘𝑧)(ball‘𝑀)𝑝) × ((2nd ‘𝑧)(ball‘𝑁)𝑝))) |
35 | 33, 34 | eqtrd 2198 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (((1st ‘𝑧)(ball‘𝑀)𝑝) × ((2nd ‘𝑧)(ball‘𝑁)𝑝))) |
36 | | xpeq1 4618 |
. . . . . . . . . . . . 13
⊢ (𝑟 = ((1st ‘𝑧)(ball‘𝑀)𝑝) → (𝑟 × 𝑠) = (((1st ‘𝑧)(ball‘𝑀)𝑝) × 𝑠)) |
37 | 36 | eqeq2d 2177 |
. . . . . . . . . . . 12
⊢ (𝑟 = ((1st ‘𝑧)(ball‘𝑀)𝑝) → (𝑤 = (𝑟 × 𝑠) ↔ 𝑤 = (((1st ‘𝑧)(ball‘𝑀)𝑝) × 𝑠))) |
38 | | xpeq2 4619 |
. . . . . . . . . . . . 13
⊢ (𝑠 = ((2nd ‘𝑧)(ball‘𝑁)𝑝) → (((1st ‘𝑧)(ball‘𝑀)𝑝) × 𝑠) = (((1st ‘𝑧)(ball‘𝑀)𝑝) × ((2nd ‘𝑧)(ball‘𝑁)𝑝))) |
39 | 38 | eqeq2d 2177 |
. . . . . . . . . . . 12
⊢ (𝑠 = ((2nd ‘𝑧)(ball‘𝑁)𝑝) → (𝑤 = (((1st ‘𝑧)(ball‘𝑀)𝑝) × 𝑠) ↔ 𝑤 = (((1st ‘𝑧)(ball‘𝑀)𝑝) × ((2nd ‘𝑧)(ball‘𝑁)𝑝)))) |
40 | 37, 39 | rspc2ev 2845 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑧)(ball‘𝑀)𝑝) ∈ 𝐽 ∧ ((2nd ‘𝑧)(ball‘𝑁)𝑝) ∈ 𝐾 ∧ 𝑤 = (((1st ‘𝑧)(ball‘𝑀)𝑝) × ((2nd ‘𝑧)(ball‘𝑁)𝑝))) → ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐾 𝑤 = (𝑟 × 𝑠)) |
41 | 27, 32, 35, 40 | syl3anc 1228 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐾 𝑤 = (𝑟 × 𝑠)) |
42 | | eqid 2165 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) = (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) |
43 | 42 | elrnmpog 5954 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐾 𝑤 = (𝑟 × 𝑠))) |
44 | 43 | elv 2730 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐾 𝑤 = (𝑟 × 𝑠)) |
45 | 41, 44 | sylibr 133 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))) |
46 | 20, 45 | sseldd 3143 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
47 | 46 | ex 114 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) → (𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))))) |
48 | 47 | rexlimdvva 2591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) → (∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))))) |
49 | 7, 48 | mpd 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) → 𝑤 ∈ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
50 | 49 | ex 114 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ ran (ball‘𝑃) → 𝑤 ∈ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))))) |
51 | 50 | ssrdv 3148 |
. . 3
⊢ (𝜑 → ran (ball‘𝑃) ⊆ (topGen‘ran
(𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
52 | | blex 13027 |
. . . . 5
⊢ (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (ball‘𝑃) ∈ V) |
53 | | rnexg 4869 |
. . . . 5
⊢
((ball‘𝑃)
∈ V → ran (ball‘𝑃) ∈ V) |
54 | 4, 52, 53 | 3syl 17 |
. . . 4
⊢ (𝜑 → ran (ball‘𝑃) ∈ V) |
55 | | tgss3 12718 |
. . . 4
⊢ ((ran
(ball‘𝑃) ∈ V
∧ ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) → ((topGen‘ran
(ball‘𝑃)) ⊆
(topGen‘ran (𝑟 ∈
𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))))) |
56 | 54, 17, 55 | syl2anc 409 |
. . 3
⊢ (𝜑 → ((topGen‘ran
(ball‘𝑃)) ⊆
(topGen‘ran (𝑟 ∈
𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))))) |
57 | 51, 56 | mpbird 166 |
. 2
⊢ (𝜑 → (topGen‘ran
(ball‘𝑃)) ⊆
(topGen‘ran (𝑟 ∈
𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
58 | | xmettx.l |
. . . 4
⊢ 𝐿 = (MetOpen‘𝑃) |
59 | 58 | mopnval 13082 |
. . 3
⊢ (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → 𝐿 = (topGen‘ran (ball‘𝑃))) |
60 | 4, 59 | syl 14 |
. 2
⊢ (𝜑 → 𝐿 = (topGen‘ran (ball‘𝑃))) |
61 | | eqid 2165 |
. . . 4
⊢ ran
(𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) = ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) |
62 | 61 | txval 12895 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
63 | 10, 13, 62 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
64 | 57, 60, 63 | 3sstr4d 3187 |
1
⊢ (𝜑 → 𝐿 ⊆ (𝐽 ×t 𝐾)) |