ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettxlem GIF version

Theorem xmettxlem 15096
Description: Lemma for xmettx 15097. (Contributed by Jim Kingdon, 15-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
xmetxp.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
xmetxp.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
xmettx.j 𝐽 = (MetOpen‘𝑀)
xmettx.k 𝐾 = (MetOpen‘𝑁)
xmettx.l 𝐿 = (MetOpen‘𝑃)
Assertion
Ref Expression
xmettxlem (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
Distinct variable groups:   𝑢,𝑀,𝑣   𝑢,𝑁,𝑣   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝑃(𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑣,𝑢)   𝐿(𝑣,𝑢)

Proof of Theorem xmettxlem
Dummy variables 𝑝 𝑟 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . . . . . . 9 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
2 xmetxp.1 . . . . . . . . 9 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 xmetxp.2 . . . . . . . . 9 (𝜑𝑁 ∈ (∞Met‘𝑌))
41, 2, 3xmetxp 15094 . . . . . . . 8 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
5 blrn 14999 . . . . . . . 8 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝)))
64, 5syl 14 . . . . . . 7 (𝜑 → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝)))
76biimpa 296 . . . . . 6 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝))
8 xmettx.j . . . . . . . . . . . . . . 15 𝐽 = (MetOpen‘𝑀)
98mopntop 15031 . . . . . . . . . . . . . 14 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
102, 9syl 14 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
11 xmettx.k . . . . . . . . . . . . . . 15 𝐾 = (MetOpen‘𝑁)
1211mopntop 15031 . . . . . . . . . . . . . 14 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ Top)
133, 12syl 14 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Top)
14 mpoexga 6321 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1510, 13, 14syl2anc 411 . . . . . . . . . . . 12 (𝜑 → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
16 rnexg 4962 . . . . . . . . . . . 12 ((𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1715, 16syl 14 . . . . . . . . . . 11 (𝜑 → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1817ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
19 bastg 14648 . . . . . . . . . 10 (ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
2018, 19syl 14 . . . . . . . . 9 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
212ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑀 ∈ (∞Met‘𝑋))
22 simplrl 535 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑧 ∈ (𝑋 × 𝑌))
23 xp1st 6274 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑌) → (1st𝑧) ∈ 𝑋)
2422, 23syl 14 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (1st𝑧) ∈ 𝑋)
25 simplrr 536 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑝 ∈ ℝ*)
268blopn 15077 . . . . . . . . . . . 12 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝑧) ∈ 𝑋𝑝 ∈ ℝ*) → ((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽)
2721, 24, 25, 26syl3anc 1250 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽)
283ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑁 ∈ (∞Met‘𝑌))
29 xp2nd 6275 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑌) → (2nd𝑧) ∈ 𝑌)
3022, 29syl 14 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (2nd𝑧) ∈ 𝑌)
3111blopn 15077 . . . . . . . . . . . 12 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝑧) ∈ 𝑌𝑝 ∈ ℝ*) → ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾)
3228, 30, 25, 31syl3anc 1250 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾)
33 simpr 110 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (𝑧(ball‘𝑃)𝑝))
341, 21, 28, 25, 22xmetxpbl 15095 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (𝑧(ball‘𝑃)𝑝) = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
3533, 34eqtrd 2240 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
36 xpeq1 4707 . . . . . . . . . . . . 13 (𝑟 = ((1st𝑧)(ball‘𝑀)𝑝) → (𝑟 × 𝑠) = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠))
3736eqeq2d 2219 . . . . . . . . . . . 12 (𝑟 = ((1st𝑧)(ball‘𝑀)𝑝) → (𝑤 = (𝑟 × 𝑠) ↔ 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠)))
38 xpeq2 4708 . . . . . . . . . . . . 13 (𝑠 = ((2nd𝑧)(ball‘𝑁)𝑝) → (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠) = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
3938eqeq2d 2219 . . . . . . . . . . . 12 (𝑠 = ((2nd𝑧)(ball‘𝑁)𝑝) → (𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠) ↔ 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝))))
4037, 39rspc2ev 2899 . . . . . . . . . . 11 ((((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽 ∧ ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝))) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
4127, 32, 35, 40syl3anc 1250 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
42 eqid 2207 . . . . . . . . . . . 12 (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
4342elrnmpog 6081 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠)))
4443elv 2780 . . . . . . . . . 10 (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
4541, 44sylibr 134 . . . . . . . . 9 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))
4620, 45sseldd 3202 . . . . . . . 8 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
4746ex 115 . . . . . . 7 (((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) → (𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
4847rexlimdvva 2633 . . . . . 6 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → (∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
497, 48mpd 13 . . . . 5 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
5049ex 115 . . . 4 (𝜑 → (𝑤 ∈ ran (ball‘𝑃) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5150ssrdv 3207 . . 3 (𝜑 → ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
52 blex 14974 . . . . 5 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (ball‘𝑃) ∈ V)
53 rnexg 4962 . . . . 5 ((ball‘𝑃) ∈ V → ran (ball‘𝑃) ∈ V)
544, 52, 533syl 17 . . . 4 (𝜑 → ran (ball‘𝑃) ∈ V)
55 tgss3 14665 . . . 4 ((ran (ball‘𝑃) ∈ V ∧ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V) → ((topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5654, 17, 55syl2anc 411 . . 3 (𝜑 → ((topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5751, 56mpbird 167 . 2 (𝜑 → (topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
58 xmettx.l . . . 4 𝐿 = (MetOpen‘𝑃)
5958mopnval 15029 . . 3 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → 𝐿 = (topGen‘ran (ball‘𝑃)))
604, 59syl 14 . 2 (𝜑𝐿 = (topGen‘ran (ball‘𝑃)))
61 eqid 2207 . . . 4 ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
6261txval 14842 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
6310, 13, 62syl2anc 411 . 2 (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
6457, 60, 633sstr4d 3246 1 (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wrex 2487  Vcvv 2776  wss 3174  {cpr 3644   × cxp 4691  ran crn 4694  cfv 5290  (class class class)co 5967  cmpo 5969  1st c1st 6247  2nd c2nd 6248  supcsup 7110  *cxr 8141   < clt 8142  topGenctg 13201  ∞Metcxmet 14413  ballcbl 14415  MetOpencmopn 14418  Topctop 14584   ×t ctx 14839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-tx 14840
This theorem is referenced by:  xmettx  15097
  Copyright terms: Public domain W3C validator