ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettxlem GIF version

Theorem xmettxlem 14981
Description: Lemma for xmettx 14982. (Contributed by Jim Kingdon, 15-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
xmetxp.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
xmetxp.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
xmettx.j 𝐽 = (MetOpen‘𝑀)
xmettx.k 𝐾 = (MetOpen‘𝑁)
xmettx.l 𝐿 = (MetOpen‘𝑃)
Assertion
Ref Expression
xmettxlem (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
Distinct variable groups:   𝑢,𝑀,𝑣   𝑢,𝑁,𝑣   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝑃(𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑣,𝑢)   𝐿(𝑣,𝑢)

Proof of Theorem xmettxlem
Dummy variables 𝑝 𝑟 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . . . . . . 9 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
2 xmetxp.1 . . . . . . . . 9 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 xmetxp.2 . . . . . . . . 9 (𝜑𝑁 ∈ (∞Met‘𝑌))
41, 2, 3xmetxp 14979 . . . . . . . 8 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
5 blrn 14884 . . . . . . . 8 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝)))
64, 5syl 14 . . . . . . 7 (𝜑 → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝)))
76biimpa 296 . . . . . 6 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝))
8 xmettx.j . . . . . . . . . . . . . . 15 𝐽 = (MetOpen‘𝑀)
98mopntop 14916 . . . . . . . . . . . . . 14 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
102, 9syl 14 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
11 xmettx.k . . . . . . . . . . . . . . 15 𝐾 = (MetOpen‘𝑁)
1211mopntop 14916 . . . . . . . . . . . . . 14 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ Top)
133, 12syl 14 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Top)
14 mpoexga 6298 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1510, 13, 14syl2anc 411 . . . . . . . . . . . 12 (𝜑 → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
16 rnexg 4943 . . . . . . . . . . . 12 ((𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1715, 16syl 14 . . . . . . . . . . 11 (𝜑 → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1817ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
19 bastg 14533 . . . . . . . . . 10 (ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
2018, 19syl 14 . . . . . . . . 9 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
212ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑀 ∈ (∞Met‘𝑋))
22 simplrl 535 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑧 ∈ (𝑋 × 𝑌))
23 xp1st 6251 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑌) → (1st𝑧) ∈ 𝑋)
2422, 23syl 14 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (1st𝑧) ∈ 𝑋)
25 simplrr 536 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑝 ∈ ℝ*)
268blopn 14962 . . . . . . . . . . . 12 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝑧) ∈ 𝑋𝑝 ∈ ℝ*) → ((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽)
2721, 24, 25, 26syl3anc 1250 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽)
283ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑁 ∈ (∞Met‘𝑌))
29 xp2nd 6252 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑌) → (2nd𝑧) ∈ 𝑌)
3022, 29syl 14 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (2nd𝑧) ∈ 𝑌)
3111blopn 14962 . . . . . . . . . . . 12 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝑧) ∈ 𝑌𝑝 ∈ ℝ*) → ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾)
3228, 30, 25, 31syl3anc 1250 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾)
33 simpr 110 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (𝑧(ball‘𝑃)𝑝))
341, 21, 28, 25, 22xmetxpbl 14980 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (𝑧(ball‘𝑃)𝑝) = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
3533, 34eqtrd 2238 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
36 xpeq1 4689 . . . . . . . . . . . . 13 (𝑟 = ((1st𝑧)(ball‘𝑀)𝑝) → (𝑟 × 𝑠) = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠))
3736eqeq2d 2217 . . . . . . . . . . . 12 (𝑟 = ((1st𝑧)(ball‘𝑀)𝑝) → (𝑤 = (𝑟 × 𝑠) ↔ 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠)))
38 xpeq2 4690 . . . . . . . . . . . . 13 (𝑠 = ((2nd𝑧)(ball‘𝑁)𝑝) → (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠) = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
3938eqeq2d 2217 . . . . . . . . . . . 12 (𝑠 = ((2nd𝑧)(ball‘𝑁)𝑝) → (𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠) ↔ 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝))))
4037, 39rspc2ev 2892 . . . . . . . . . . 11 ((((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽 ∧ ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝))) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
4127, 32, 35, 40syl3anc 1250 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
42 eqid 2205 . . . . . . . . . . . 12 (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
4342elrnmpog 6058 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠)))
4443elv 2776 . . . . . . . . . 10 (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
4541, 44sylibr 134 . . . . . . . . 9 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))
4620, 45sseldd 3194 . . . . . . . 8 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
4746ex 115 . . . . . . 7 (((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) → (𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
4847rexlimdvva 2631 . . . . . 6 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → (∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
497, 48mpd 13 . . . . 5 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
5049ex 115 . . . 4 (𝜑 → (𝑤 ∈ ran (ball‘𝑃) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5150ssrdv 3199 . . 3 (𝜑 → ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
52 blex 14859 . . . . 5 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (ball‘𝑃) ∈ V)
53 rnexg 4943 . . . . 5 ((ball‘𝑃) ∈ V → ran (ball‘𝑃) ∈ V)
544, 52, 533syl 17 . . . 4 (𝜑 → ran (ball‘𝑃) ∈ V)
55 tgss3 14550 . . . 4 ((ran (ball‘𝑃) ∈ V ∧ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V) → ((topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5654, 17, 55syl2anc 411 . . 3 (𝜑 → ((topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5751, 56mpbird 167 . 2 (𝜑 → (topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
58 xmettx.l . . . 4 𝐿 = (MetOpen‘𝑃)
5958mopnval 14914 . . 3 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → 𝐿 = (topGen‘ran (ball‘𝑃)))
604, 59syl 14 . 2 (𝜑𝐿 = (topGen‘ran (ball‘𝑃)))
61 eqid 2205 . . . 4 ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
6261txval 14727 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
6310, 13, 62syl2anc 411 . 2 (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
6457, 60, 633sstr4d 3238 1 (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wrex 2485  Vcvv 2772  wss 3166  {cpr 3634   × cxp 4673  ran crn 4676  cfv 5271  (class class class)co 5944  cmpo 5946  1st c1st 6224  2nd c2nd 6225  supcsup 7084  *cxr 8106   < clt 8107  topGenctg 13086  ∞Metcxmet 14298  ballcbl 14300  MetOpencmopn 14303  Topctop 14469   ×t ctx 14724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-map 6737  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-tx 14725
This theorem is referenced by:  xmettx  14982
  Copyright terms: Public domain W3C validator