ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettxlem GIF version

Theorem xmettxlem 12678
Description: Lemma for xmettx 12679. (Contributed by Jim Kingdon, 15-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
xmetxp.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
xmetxp.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
xmettx.j 𝐽 = (MetOpen‘𝑀)
xmettx.k 𝐾 = (MetOpen‘𝑁)
xmettx.l 𝐿 = (MetOpen‘𝑃)
Assertion
Ref Expression
xmettxlem (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
Distinct variable groups:   𝑢,𝑀,𝑣   𝑢,𝑁,𝑣   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝑃(𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑣,𝑢)   𝐿(𝑣,𝑢)

Proof of Theorem xmettxlem
Dummy variables 𝑝 𝑟 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . . . . . . 9 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
2 xmetxp.1 . . . . . . . . 9 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 xmetxp.2 . . . . . . . . 9 (𝜑𝑁 ∈ (∞Met‘𝑌))
41, 2, 3xmetxp 12676 . . . . . . . 8 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
5 blrn 12581 . . . . . . . 8 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝)))
64, 5syl 14 . . . . . . 7 (𝜑 → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝)))
76biimpa 294 . . . . . 6 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝))
8 xmettx.j . . . . . . . . . . . . . . 15 𝐽 = (MetOpen‘𝑀)
98mopntop 12613 . . . . . . . . . . . . . 14 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
102, 9syl 14 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
11 xmettx.k . . . . . . . . . . . . . . 15 𝐾 = (MetOpen‘𝑁)
1211mopntop 12613 . . . . . . . . . . . . . 14 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ Top)
133, 12syl 14 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Top)
14 mpoexga 6110 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1510, 13, 14syl2anc 408 . . . . . . . . . . . 12 (𝜑 → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
16 rnexg 4804 . . . . . . . . . . . 12 ((𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1715, 16syl 14 . . . . . . . . . . 11 (𝜑 → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
1817ad3antrrr 483 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
19 bastg 12230 . . . . . . . . . 10 (ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
2018, 19syl 14 . . . . . . . . 9 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
212ad3antrrr 483 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑀 ∈ (∞Met‘𝑋))
22 simplrl 524 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑧 ∈ (𝑋 × 𝑌))
23 xp1st 6063 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑌) → (1st𝑧) ∈ 𝑋)
2422, 23syl 14 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (1st𝑧) ∈ 𝑋)
25 simplrr 525 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑝 ∈ ℝ*)
268blopn 12659 . . . . . . . . . . . 12 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝑧) ∈ 𝑋𝑝 ∈ ℝ*) → ((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽)
2721, 24, 25, 26syl3anc 1216 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽)
283ad3antrrr 483 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑁 ∈ (∞Met‘𝑌))
29 xp2nd 6064 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑌) → (2nd𝑧) ∈ 𝑌)
3022, 29syl 14 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (2nd𝑧) ∈ 𝑌)
3111blopn 12659 . . . . . . . . . . . 12 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝑧) ∈ 𝑌𝑝 ∈ ℝ*) → ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾)
3228, 30, 25, 31syl3anc 1216 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾)
33 simpr 109 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (𝑧(ball‘𝑃)𝑝))
341, 21, 28, 25, 22xmetxpbl 12677 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (𝑧(ball‘𝑃)𝑝) = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
3533, 34eqtrd 2172 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
36 xpeq1 4553 . . . . . . . . . . . . 13 (𝑟 = ((1st𝑧)(ball‘𝑀)𝑝) → (𝑟 × 𝑠) = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠))
3736eqeq2d 2151 . . . . . . . . . . . 12 (𝑟 = ((1st𝑧)(ball‘𝑀)𝑝) → (𝑤 = (𝑟 × 𝑠) ↔ 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠)))
38 xpeq2 4554 . . . . . . . . . . . . 13 (𝑠 = ((2nd𝑧)(ball‘𝑁)𝑝) → (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠) = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝)))
3938eqeq2d 2151 . . . . . . . . . . . 12 (𝑠 = ((2nd𝑧)(ball‘𝑁)𝑝) → (𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × 𝑠) ↔ 𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝))))
4037, 39rspc2ev 2804 . . . . . . . . . . 11 ((((1st𝑧)(ball‘𝑀)𝑝) ∈ 𝐽 ∧ ((2nd𝑧)(ball‘𝑁)𝑝) ∈ 𝐾𝑤 = (((1st𝑧)(ball‘𝑀)𝑝) × ((2nd𝑧)(ball‘𝑁)𝑝))) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
4127, 32, 35, 40syl3anc 1216 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
42 eqid 2139 . . . . . . . . . . . 12 (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
4342elrnmpog 5883 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠)))
4443elv 2690 . . . . . . . . . 10 (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
4541, 44sylibr 133 . . . . . . . . 9 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))
4620, 45sseldd 3098 . . . . . . . 8 ((((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
4746ex 114 . . . . . . 7 (((𝜑𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) → (𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
4847rexlimdvva 2557 . . . . . 6 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → (∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
497, 48mpd 13 . . . . 5 ((𝜑𝑤 ∈ ran (ball‘𝑃)) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
5049ex 114 . . . 4 (𝜑 → (𝑤 ∈ ran (ball‘𝑃) → 𝑤 ∈ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5150ssrdv 3103 . . 3 (𝜑 → ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
52 blex 12556 . . . . 5 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (ball‘𝑃) ∈ V)
53 rnexg 4804 . . . . 5 ((ball‘𝑃) ∈ V → ran (ball‘𝑃) ∈ V)
544, 52, 533syl 17 . . . 4 (𝜑 → ran (ball‘𝑃) ∈ V)
55 tgss3 12247 . . . 4 ((ran (ball‘𝑃) ∈ V ∧ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V) → ((topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5654, 17, 55syl2anc 408 . . 3 (𝜑 → ((topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)))))
5751, 56mpbird 166 . 2 (𝜑 → (topGen‘ran (ball‘𝑃)) ⊆ (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
58 xmettx.l . . . 4 𝐿 = (MetOpen‘𝑃)
5958mopnval 12611 . . 3 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → 𝐿 = (topGen‘ran (ball‘𝑃)))
604, 59syl 14 . 2 (𝜑𝐿 = (topGen‘ran (ball‘𝑃)))
61 eqid 2139 . . . 4 ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
6261txval 12424 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
6310, 13, 62syl2anc 408 . 2 (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
6457, 60, 633sstr4d 3142 1 (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wrex 2417  Vcvv 2686  wss 3071  {cpr 3528   × cxp 4537  ran crn 4540  cfv 5123  (class class class)co 5774  cmpo 5776  1st c1st 6036  2nd c2nd 6037  supcsup 6869  *cxr 7799   < clt 7800  topGenctg 12135  ∞Metcxmet 12149  ballcbl 12151  MetOpencmopn 12154  Topctop 12164   ×t ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-tx 12422
This theorem is referenced by:  xmettx  12679
  Copyright terms: Public domain W3C validator