Step | Hyp | Ref
| Expression |
1 | | xmetxp.p |
. . . . . . . . 9
β’ π = (π’ β (π Γ π), π£ β (π Γ π) β¦ sup({((1st βπ’)π(1st βπ£)), ((2nd βπ’)π(2nd βπ£))}, β*, <
)) |
2 | | xmetxp.1 |
. . . . . . . . 9
β’ (π β π β (βMetβπ)) |
3 | | xmetxp.2 |
. . . . . . . . 9
β’ (π β π β (βMetβπ)) |
4 | 1, 2, 3 | xmetxp 14046 |
. . . . . . . 8
β’ (π β π β (βMetβ(π Γ π))) |
5 | | blrn 13951 |
. . . . . . . 8
β’ (π β (βMetβ(π Γ π)) β (π€ β ran (ballβπ) β βπ§ β (π Γ π)βπ β β* π€ = (π§(ballβπ)π))) |
6 | 4, 5 | syl 14 |
. . . . . . 7
β’ (π β (π€ β ran (ballβπ) β βπ§ β (π Γ π)βπ β β* π€ = (π§(ballβπ)π))) |
7 | 6 | biimpa 296 |
. . . . . 6
β’ ((π β§ π€ β ran (ballβπ)) β βπ§ β (π Γ π)βπ β β* π€ = (π§(ballβπ)π)) |
8 | | xmettx.j |
. . . . . . . . . . . . . . 15
β’ π½ = (MetOpenβπ) |
9 | 8 | mopntop 13983 |
. . . . . . . . . . . . . 14
β’ (π β (βMetβπ) β π½ β Top) |
10 | 2, 9 | syl 14 |
. . . . . . . . . . . . 13
β’ (π β π½ β Top) |
11 | | xmettx.k |
. . . . . . . . . . . . . . 15
β’ πΎ = (MetOpenβπ) |
12 | 11 | mopntop 13983 |
. . . . . . . . . . . . . 14
β’ (π β (βMetβπ) β πΎ β Top) |
13 | 3, 12 | syl 14 |
. . . . . . . . . . . . 13
β’ (π β πΎ β Top) |
14 | | mpoexga 6215 |
. . . . . . . . . . . . 13
β’ ((π½ β Top β§ πΎ β Top) β (π β π½, π β πΎ β¦ (π Γ π )) β V) |
15 | 10, 13, 14 | syl2anc 411 |
. . . . . . . . . . . 12
β’ (π β (π β π½, π β πΎ β¦ (π Γ π )) β V) |
16 | | rnexg 4894 |
. . . . . . . . . . . 12
β’ ((π β π½, π β πΎ β¦ (π Γ π )) β V β ran (π β π½, π β πΎ β¦ (π Γ π )) β V) |
17 | 15, 16 | syl 14 |
. . . . . . . . . . 11
β’ (π β ran (π β π½, π β πΎ β¦ (π Γ π )) β V) |
18 | 17 | ad3antrrr 492 |
. . . . . . . . . 10
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β ran (π β π½, π β πΎ β¦ (π Γ π )) β V) |
19 | | bastg 13600 |
. . . . . . . . . 10
β’ (ran
(π β π½, π β πΎ β¦ (π Γ π )) β V β ran (π β π½, π β πΎ β¦ (π Γ π )) β (topGenβran (π β π½, π β πΎ β¦ (π Γ π )))) |
20 | 18, 19 | syl 14 |
. . . . . . . . 9
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β ran (π β π½, π β πΎ β¦ (π Γ π )) β (topGenβran (π β π½, π β πΎ β¦ (π Γ π )))) |
21 | 2 | ad3antrrr 492 |
. . . . . . . . . . . 12
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β π β (βMetβπ)) |
22 | | simplrl 535 |
. . . . . . . . . . . . 13
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β π§ β (π Γ π)) |
23 | | xp1st 6168 |
. . . . . . . . . . . . 13
β’ (π§ β (π Γ π) β (1st βπ§) β π) |
24 | 22, 23 | syl 14 |
. . . . . . . . . . . 12
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β (1st βπ§) β π) |
25 | | simplrr 536 |
. . . . . . . . . . . 12
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β π β β*) |
26 | 8 | blopn 14029 |
. . . . . . . . . . . 12
β’ ((π β (βMetβπ) β§ (1st
βπ§) β π β§ π β β*) β
((1st βπ§)(ballβπ)π) β π½) |
27 | 21, 24, 25, 26 | syl3anc 1238 |
. . . . . . . . . . 11
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β ((1st βπ§)(ballβπ)π) β π½) |
28 | 3 | ad3antrrr 492 |
. . . . . . . . . . . 12
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β π β (βMetβπ)) |
29 | | xp2nd 6169 |
. . . . . . . . . . . . 13
β’ (π§ β (π Γ π) β (2nd βπ§) β π) |
30 | 22, 29 | syl 14 |
. . . . . . . . . . . 12
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β (2nd βπ§) β π) |
31 | 11 | blopn 14029 |
. . . . . . . . . . . 12
β’ ((π β (βMetβπ) β§ (2nd
βπ§) β π β§ π β β*) β
((2nd βπ§)(ballβπ)π) β πΎ) |
32 | 28, 30, 25, 31 | syl3anc 1238 |
. . . . . . . . . . 11
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β ((2nd βπ§)(ballβπ)π) β πΎ) |
33 | | simpr 110 |
. . . . . . . . . . . 12
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β π€ = (π§(ballβπ)π)) |
34 | 1, 21, 28, 25, 22 | xmetxpbl 14047 |
. . . . . . . . . . . 12
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β (π§(ballβπ)π) = (((1st βπ§)(ballβπ)π) Γ ((2nd βπ§)(ballβπ)π))) |
35 | 33, 34 | eqtrd 2210 |
. . . . . . . . . . 11
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β π€ = (((1st βπ§)(ballβπ)π) Γ ((2nd βπ§)(ballβπ)π))) |
36 | | xpeq1 4642 |
. . . . . . . . . . . . 13
β’ (π = ((1st βπ§)(ballβπ)π) β (π Γ π ) = (((1st βπ§)(ballβπ)π) Γ π )) |
37 | 36 | eqeq2d 2189 |
. . . . . . . . . . . 12
β’ (π = ((1st βπ§)(ballβπ)π) β (π€ = (π Γ π ) β π€ = (((1st βπ§)(ballβπ)π) Γ π ))) |
38 | | xpeq2 4643 |
. . . . . . . . . . . . 13
β’ (π = ((2nd βπ§)(ballβπ)π) β (((1st βπ§)(ballβπ)π) Γ π ) = (((1st βπ§)(ballβπ)π) Γ ((2nd βπ§)(ballβπ)π))) |
39 | 38 | eqeq2d 2189 |
. . . . . . . . . . . 12
β’ (π = ((2nd βπ§)(ballβπ)π) β (π€ = (((1st βπ§)(ballβπ)π) Γ π ) β π€ = (((1st βπ§)(ballβπ)π) Γ ((2nd βπ§)(ballβπ)π)))) |
40 | 37, 39 | rspc2ev 2858 |
. . . . . . . . . . 11
β’
((((1st βπ§)(ballβπ)π) β π½ β§ ((2nd βπ§)(ballβπ)π) β πΎ β§ π€ = (((1st βπ§)(ballβπ)π) Γ ((2nd βπ§)(ballβπ)π))) β βπ β π½ βπ β πΎ π€ = (π Γ π )) |
41 | 27, 32, 35, 40 | syl3anc 1238 |
. . . . . . . . . 10
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β βπ β π½ βπ β πΎ π€ = (π Γ π )) |
42 | | eqid 2177 |
. . . . . . . . . . . 12
β’ (π β π½, π β πΎ β¦ (π Γ π )) = (π β π½, π β πΎ β¦ (π Γ π )) |
43 | 42 | elrnmpog 5989 |
. . . . . . . . . . 11
β’ (π€ β V β (π€ β ran (π β π½, π β πΎ β¦ (π Γ π )) β βπ β π½ βπ β πΎ π€ = (π Γ π ))) |
44 | 43 | elv 2743 |
. . . . . . . . . 10
β’ (π€ β ran (π β π½, π β πΎ β¦ (π Γ π )) β βπ β π½ βπ β πΎ π€ = (π Γ π )) |
45 | 41, 44 | sylibr 134 |
. . . . . . . . 9
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β π€ β ran (π β π½, π β πΎ β¦ (π Γ π ))) |
46 | 20, 45 | sseldd 3158 |
. . . . . . . 8
β’ ((((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β§ π€ = (π§(ballβπ)π)) β π€ β (topGenβran (π β π½, π β πΎ β¦ (π Γ π )))) |
47 | 46 | ex 115 |
. . . . . . 7
β’ (((π β§ π€ β ran (ballβπ)) β§ (π§ β (π Γ π) β§ π β β*)) β (π€ = (π§(ballβπ)π) β π€ β (topGenβran (π β π½, π β πΎ β¦ (π Γ π ))))) |
48 | 47 | rexlimdvva 2602 |
. . . . . 6
β’ ((π β§ π€ β ran (ballβπ)) β (βπ§ β (π Γ π)βπ β β* π€ = (π§(ballβπ)π) β π€ β (topGenβran (π β π½, π β πΎ β¦ (π Γ π ))))) |
49 | 7, 48 | mpd 13 |
. . . . 5
β’ ((π β§ π€ β ran (ballβπ)) β π€ β (topGenβran (π β π½, π β πΎ β¦ (π Γ π )))) |
50 | 49 | ex 115 |
. . . 4
β’ (π β (π€ β ran (ballβπ) β π€ β (topGenβran (π β π½, π β πΎ β¦ (π Γ π ))))) |
51 | 50 | ssrdv 3163 |
. . 3
β’ (π β ran (ballβπ) β (topGenβran
(π β π½, π β πΎ β¦ (π Γ π )))) |
52 | | blex 13926 |
. . . . 5
β’ (π β (βMetβ(π Γ π)) β (ballβπ) β V) |
53 | | rnexg 4894 |
. . . . 5
β’
((ballβπ)
β V β ran (ballβπ) β V) |
54 | 4, 52, 53 | 3syl 17 |
. . . 4
β’ (π β ran (ballβπ) β V) |
55 | | tgss3 13617 |
. . . 4
β’ ((ran
(ballβπ) β V
β§ ran (π β π½, π β πΎ β¦ (π Γ π )) β V) β ((topGenβran
(ballβπ)) β
(topGenβran (π β
π½, π β πΎ β¦ (π Γ π ))) β ran (ballβπ) β (topGenβran (π β π½, π β πΎ β¦ (π Γ π ))))) |
56 | 54, 17, 55 | syl2anc 411 |
. . 3
β’ (π β ((topGenβran
(ballβπ)) β
(topGenβran (π β
π½, π β πΎ β¦ (π Γ π ))) β ran (ballβπ) β (topGenβran (π β π½, π β πΎ β¦ (π Γ π ))))) |
57 | 51, 56 | mpbird 167 |
. 2
β’ (π β (topGenβran
(ballβπ)) β
(topGenβran (π β
π½, π β πΎ β¦ (π Γ π )))) |
58 | | xmettx.l |
. . . 4
β’ πΏ = (MetOpenβπ) |
59 | 58 | mopnval 13981 |
. . 3
β’ (π β (βMetβ(π Γ π)) β πΏ = (topGenβran (ballβπ))) |
60 | 4, 59 | syl 14 |
. 2
β’ (π β πΏ = (topGenβran (ballβπ))) |
61 | | eqid 2177 |
. . . 4
β’ ran
(π β π½, π β πΎ β¦ (π Γ π )) = ran (π β π½, π β πΎ β¦ (π Γ π )) |
62 | 61 | txval 13794 |
. . 3
β’ ((π½ β Top β§ πΎ β Top) β (π½ Γt πΎ) = (topGenβran (π β π½, π β πΎ β¦ (π Γ π )))) |
63 | 10, 13, 62 | syl2anc 411 |
. 2
β’ (π β (π½ Γt πΎ) = (topGenβran (π β π½, π β πΎ β¦ (π Γ π )))) |
64 | 57, 60, 63 | 3sstr4d 3202 |
1
β’ (π β πΏ β (π½ Γt πΎ)) |