| Step | Hyp | Ref
| Expression |
| 1 | | xmetxp.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
)) |
| 2 | | xmetxp.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
| 3 | | xmetxp.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
| 4 | 1, 2, 3 | xmetxp 14743 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) |
| 5 | | blrn 14648 |
. . . . . . . 8
⊢ (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝))) |
| 6 | 4, 5 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ ran (ball‘𝑃) ↔ ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝))) |
| 7 | 6 | biimpa 296 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) → ∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝)) |
| 8 | | xmettx.j |
. . . . . . . . . . . . . . 15
⊢ 𝐽 = (MetOpen‘𝑀) |
| 9 | 8 | mopntop 14680 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 10 | 2, 9 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ Top) |
| 11 | | xmettx.k |
. . . . . . . . . . . . . . 15
⊢ 𝐾 = (MetOpen‘𝑁) |
| 12 | 11 | mopntop 14680 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ Top) |
| 13 | 3, 12 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ Top) |
| 14 | | mpoexga 6270 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) |
| 15 | 10, 13, 14 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) |
| 16 | | rnexg 4931 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) |
| 18 | 17 | ad3antrrr 492 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) |
| 19 | | bastg 14297 |
. . . . . . . . . 10
⊢ (ran
(𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
| 20 | 18, 19 | syl 14 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
| 21 | 2 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑀 ∈ (∞Met‘𝑋)) |
| 22 | | simplrl 535 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑧 ∈ (𝑋 × 𝑌)) |
| 23 | | xp1st 6223 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (1st ‘𝑧) ∈ 𝑋) |
| 24 | 22, 23 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (1st ‘𝑧) ∈ 𝑋) |
| 25 | | simplrr 536 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑝 ∈ ℝ*) |
| 26 | 8 | blopn 14726 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st
‘𝑧) ∈ 𝑋 ∧ 𝑝 ∈ ℝ*) →
((1st ‘𝑧)(ball‘𝑀)𝑝) ∈ 𝐽) |
| 27 | 21, 24, 25, 26 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((1st ‘𝑧)(ball‘𝑀)𝑝) ∈ 𝐽) |
| 28 | 3 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑁 ∈ (∞Met‘𝑌)) |
| 29 | | xp2nd 6224 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (2nd ‘𝑧) ∈ 𝑌) |
| 30 | 22, 29 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (2nd ‘𝑧) ∈ 𝑌) |
| 31 | 11 | blopn 14726 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd
‘𝑧) ∈ 𝑌 ∧ 𝑝 ∈ ℝ*) →
((2nd ‘𝑧)(ball‘𝑁)𝑝) ∈ 𝐾) |
| 32 | 28, 30, 25, 31 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ((2nd ‘𝑧)(ball‘𝑁)𝑝) ∈ 𝐾) |
| 33 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (𝑧(ball‘𝑃)𝑝)) |
| 34 | 1, 21, 28, 25, 22 | xmetxpbl 14744 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → (𝑧(ball‘𝑃)𝑝) = (((1st ‘𝑧)(ball‘𝑀)𝑝) × ((2nd ‘𝑧)(ball‘𝑁)𝑝))) |
| 35 | 33, 34 | eqtrd 2229 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 = (((1st ‘𝑧)(ball‘𝑀)𝑝) × ((2nd ‘𝑧)(ball‘𝑁)𝑝))) |
| 36 | | xpeq1 4677 |
. . . . . . . . . . . . 13
⊢ (𝑟 = ((1st ‘𝑧)(ball‘𝑀)𝑝) → (𝑟 × 𝑠) = (((1st ‘𝑧)(ball‘𝑀)𝑝) × 𝑠)) |
| 37 | 36 | eqeq2d 2208 |
. . . . . . . . . . . 12
⊢ (𝑟 = ((1st ‘𝑧)(ball‘𝑀)𝑝) → (𝑤 = (𝑟 × 𝑠) ↔ 𝑤 = (((1st ‘𝑧)(ball‘𝑀)𝑝) × 𝑠))) |
| 38 | | xpeq2 4678 |
. . . . . . . . . . . . 13
⊢ (𝑠 = ((2nd ‘𝑧)(ball‘𝑁)𝑝) → (((1st ‘𝑧)(ball‘𝑀)𝑝) × 𝑠) = (((1st ‘𝑧)(ball‘𝑀)𝑝) × ((2nd ‘𝑧)(ball‘𝑁)𝑝))) |
| 39 | 38 | eqeq2d 2208 |
. . . . . . . . . . . 12
⊢ (𝑠 = ((2nd ‘𝑧)(ball‘𝑁)𝑝) → (𝑤 = (((1st ‘𝑧)(ball‘𝑀)𝑝) × 𝑠) ↔ 𝑤 = (((1st ‘𝑧)(ball‘𝑀)𝑝) × ((2nd ‘𝑧)(ball‘𝑁)𝑝)))) |
| 40 | 37, 39 | rspc2ev 2883 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑧)(ball‘𝑀)𝑝) ∈ 𝐽 ∧ ((2nd ‘𝑧)(ball‘𝑁)𝑝) ∈ 𝐾 ∧ 𝑤 = (((1st ‘𝑧)(ball‘𝑀)𝑝) × ((2nd ‘𝑧)(ball‘𝑁)𝑝))) → ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐾 𝑤 = (𝑟 × 𝑠)) |
| 41 | 27, 32, 35, 40 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐾 𝑤 = (𝑟 × 𝑠)) |
| 42 | | eqid 2196 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) = (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) |
| 43 | 42 | elrnmpog 6035 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐾 𝑤 = (𝑟 × 𝑠))) |
| 44 | 43 | elv 2767 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐾 𝑤 = (𝑟 × 𝑠)) |
| 45 | 41, 44 | sylibr 134 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))) |
| 46 | 20, 45 | sseldd 3184 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) ∧ 𝑤 = (𝑧(ball‘𝑃)𝑝)) → 𝑤 ∈ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
| 47 | 46 | ex 115 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) ∧ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑝 ∈ ℝ*)) → (𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))))) |
| 48 | 47 | rexlimdvva 2622 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) → (∃𝑧 ∈ (𝑋 × 𝑌)∃𝑝 ∈ ℝ* 𝑤 = (𝑧(ball‘𝑃)𝑝) → 𝑤 ∈ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))))) |
| 49 | 7, 48 | mpd 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ran (ball‘𝑃)) → 𝑤 ∈ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
| 50 | 49 | ex 115 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ ran (ball‘𝑃) → 𝑤 ∈ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))))) |
| 51 | 50 | ssrdv 3189 |
. . 3
⊢ (𝜑 → ran (ball‘𝑃) ⊆ (topGen‘ran
(𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
| 52 | | blex 14623 |
. . . . 5
⊢ (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (ball‘𝑃) ∈ V) |
| 53 | | rnexg 4931 |
. . . . 5
⊢
((ball‘𝑃)
∈ V → ran (ball‘𝑃) ∈ V) |
| 54 | 4, 52, 53 | 3syl 17 |
. . . 4
⊢ (𝜑 → ran (ball‘𝑃) ∈ V) |
| 55 | | tgss3 14314 |
. . . 4
⊢ ((ran
(ball‘𝑃) ∈ V
∧ ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) ∈ V) → ((topGen‘ran
(ball‘𝑃)) ⊆
(topGen‘ran (𝑟 ∈
𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))))) |
| 56 | 54, 17, 55 | syl2anc 411 |
. . 3
⊢ (𝜑 → ((topGen‘ran
(ball‘𝑃)) ⊆
(topGen‘ran (𝑟 ∈
𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))) ↔ ran (ball‘𝑃) ⊆ (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠))))) |
| 57 | 51, 56 | mpbird 167 |
. 2
⊢ (𝜑 → (topGen‘ran
(ball‘𝑃)) ⊆
(topGen‘ran (𝑟 ∈
𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
| 58 | | xmettx.l |
. . . 4
⊢ 𝐿 = (MetOpen‘𝑃) |
| 59 | 58 | mopnval 14678 |
. . 3
⊢ (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → 𝐿 = (topGen‘ran (ball‘𝑃))) |
| 60 | 4, 59 | syl 14 |
. 2
⊢ (𝜑 → 𝐿 = (topGen‘ran (ball‘𝑃))) |
| 61 | | eqid 2196 |
. . . 4
⊢ ran
(𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) = ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)) |
| 62 | 61 | txval 14491 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
| 63 | 10, 13, 62 | syl2anc 411 |
. 2
⊢ (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟 ∈ 𝐽, 𝑠 ∈ 𝐾 ↦ (𝑟 × 𝑠)))) |
| 64 | 57, 60, 63 | 3sstr4d 3228 |
1
⊢ (𝜑 → 𝐿 ⊆ (𝐽 ×t 𝐾)) |