| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2196 |
. . . 4
⊢ ran
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) |
| 2 | 1 | txbasex 14577 |
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) ∈ V) |
| 3 | | resmpo 6024 |
. . . . . 6
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) ↾ (𝐴 × 𝐶)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦))) |
| 4 | | resss 4971 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) ↾ (𝐴 × 𝐶)) ⊆ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) |
| 5 | 3, 4 | eqsstrrdi 3237 |
. . . . 5
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦))) |
| 6 | 5 | adantl 277 |
. . . 4
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦))) |
| 7 | | rnss 4897 |
. . . 4
⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) → ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦))) |
| 8 | 6, 7 | syl 14 |
. . 3
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦))) |
| 9 | | tgss 14383 |
. . 3
⊢ ((ran
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) ∈ V ∧ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦))) → (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦))) ⊆ (topGen‘ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)))) |
| 10 | 2, 8, 9 | syl2an2r 595 |
. 2
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦))) ⊆ (topGen‘ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)))) |
| 11 | | ssexg 4173 |
. . . . 5
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
| 12 | | ssexg 4173 |
. . . . 5
⊢ ((𝐶 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊) → 𝐶 ∈ V) |
| 13 | | eqid 2196 |
. . . . . 6
⊢ ran
(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) |
| 14 | 13 | txval 14575 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)))) |
| 15 | 11, 12, 14 | syl2an 289 |
. . . 4
⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)))) |
| 16 | 15 | an4s 588 |
. . 3
⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)))) |
| 17 | 16 | ancoms 268 |
. 2
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)))) |
| 18 | 1 | txval 14575 |
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (𝐵 ×t 𝐷) = (topGen‘ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)))) |
| 19 | 18 | adantr 276 |
. 2
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝐵 ×t 𝐷) = (topGen‘ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)))) |
| 20 | 10, 17, 19 | 3sstr4d 3229 |
1
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷)) |