ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txss12 GIF version

Theorem txss12 13060
Description: Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txss12 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷))

Proof of Theorem txss12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . . 4 ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) = ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))
21txbasex 13051 . . 3 ((𝐵𝑉𝐷𝑊) → ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ∈ V)
3 resmpo 5951 . . . . . 6 ((𝐴𝐵𝐶𝐷) → ((𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ↾ (𝐴 × 𝐶)) = (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)))
4 resss 4915 . . . . . 6 ((𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ↾ (𝐴 × 𝐶)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))
53, 4eqsstrrdi 3200 . . . . 5 ((𝐴𝐵𝐶𝐷) → (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
65adantl 275 . . . 4 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
7 rnss 4841 . . . 4 ((𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) → ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
86, 7syl 14 . . 3 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
9 tgss 12857 . . 3 ((ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ∈ V ∧ ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))) → (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))) ⊆ (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
102, 8, 9syl2an2r 590 . 2 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))) ⊆ (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
11 ssexg 4128 . . . . 5 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
12 ssexg 4128 . . . . 5 ((𝐶𝐷𝐷𝑊) → 𝐶 ∈ V)
13 eqid 2170 . . . . . 6 ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) = ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))
1413txval 13049 . . . . 5 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
1511, 12, 14syl2an 287 . . . 4 (((𝐴𝐵𝐵𝑉) ∧ (𝐶𝐷𝐷𝑊)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
1615an4s 583 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝑉𝐷𝑊)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
1716ancoms 266 . 2 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
181txval 13049 . . 3 ((𝐵𝑉𝐷𝑊) → (𝐵 ×t 𝐷) = (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
1918adantr 274 . 2 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐵 ×t 𝐷) = (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
2010, 17, 193sstr4d 3192 1 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  wss 3121   × cxp 4609  ran crn 4612  cres 4613  cfv 5198  (class class class)co 5853  cmpo 5855  topGenctg 12594   ×t ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-topgen 12600  df-tx 13047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator