![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzoss2 | GIF version |
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
fzoss2 | ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9597 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ∈ ℤ) | |
2 | peano2zm 9355 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝐾 − 1) ∈ ℤ) |
4 | 1zzd 9344 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 1 ∈ ℤ) | |
5 | id 19 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
6 | 1 | zcnd 9440 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ∈ ℂ) |
7 | ax-1cn 7965 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
8 | npcan 8228 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾) | |
9 | 6, 7, 8 | sylancl 413 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → ((𝐾 − 1) + 1) = 𝐾) |
10 | 9 | fveq2d 5558 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (ℤ≥‘((𝐾 − 1) + 1)) = (ℤ≥‘𝐾)) |
11 | 5, 10 | eleqtrrd 2273 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) |
12 | eluzsub 9622 | . . . 4 ⊢ (((𝐾 − 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1))) | |
13 | 3, 4, 11, 12 | syl3anc 1249 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1))) |
14 | fzss2 10130 | . . 3 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1))) | |
15 | 13, 14 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1))) |
16 | fzoval 10214 | . . 3 ⊢ (𝐾 ∈ ℤ → (𝑀..^𝐾) = (𝑀...(𝐾 − 1))) | |
17 | 1, 16 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) = (𝑀...(𝐾 − 1))) |
18 | eluzelz 9601 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
19 | fzoval 10214 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
20 | 18, 19 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
21 | 15, 17, 20 | 3sstr4d 3224 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 1c1 7873 + caddc 7875 − cmin 8190 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 ..^cfzo 10208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-fzo 10209 |
This theorem is referenced by: fzossrbm1 10240 fzosplit 10244 fzossfzop1 10279 |
Copyright terms: Public domain | W3C validator |