ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzoss2 GIF version

Theorem fzoss2 9980
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzoss2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁))

Proof of Theorem fzoss2
StepHypRef Expression
1 eluzel2 9355 . . . . 5 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
2 peano2zm 9116 . . . . 5 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
31, 2syl 14 . . . 4 (𝑁 ∈ (ℤ𝐾) → (𝐾 − 1) ∈ ℤ)
4 1zzd 9105 . . . 4 (𝑁 ∈ (ℤ𝐾) → 1 ∈ ℤ)
5 id 19 . . . . 5 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (ℤ𝐾))
61zcnd 9198 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℂ)
7 ax-1cn 7737 . . . . . . 7 1 ∈ ℂ
8 npcan 7995 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
96, 7, 8sylancl 410 . . . . . 6 (𝑁 ∈ (ℤ𝐾) → ((𝐾 − 1) + 1) = 𝐾)
109fveq2d 5433 . . . . 5 (𝑁 ∈ (ℤ𝐾) → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
115, 10eleqtrrd 2220 . . . 4 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
12 eluzsub 9379 . . . 4 (((𝐾 − 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)))
133, 4, 11, 12syl3anc 1217 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)))
14 fzss2 9875 . . 3 ((𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1)))
1513, 14syl 14 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1)))
16 fzoval 9956 . . 3 (𝐾 ∈ ℤ → (𝑀..^𝐾) = (𝑀...(𝐾 − 1)))
171, 16syl 14 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) = (𝑀...(𝐾 − 1)))
18 eluzelz 9359 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ ℤ)
19 fzoval 9956 . . 3 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
2018, 19syl 14 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
2115, 17, 203sstr4d 3147 1 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481  wss 3076  cfv 5131  (class class class)co 5782  cc 7642  1c1 7645   + caddc 7647  cmin 7957  cz 9078  cuz 9350  ...cfz 9821  ..^cfzo 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951
This theorem is referenced by:  fzossrbm1  9981  fzosplit  9985  fzossfzop1  10020
  Copyright terms: Public domain W3C validator