Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzoss2 | GIF version |
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
fzoss2 | ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9481 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ∈ ℤ) | |
2 | peano2zm 9239 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝐾 − 1) ∈ ℤ) |
4 | 1zzd 9228 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 1 ∈ ℤ) | |
5 | id 19 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
6 | 1 | zcnd 9324 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ∈ ℂ) |
7 | ax-1cn 7856 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
8 | npcan 8117 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾) | |
9 | 6, 7, 8 | sylancl 411 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → ((𝐾 − 1) + 1) = 𝐾) |
10 | 9 | fveq2d 5498 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (ℤ≥‘((𝐾 − 1) + 1)) = (ℤ≥‘𝐾)) |
11 | 5, 10 | eleqtrrd 2250 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) |
12 | eluzsub 9505 | . . . 4 ⊢ (((𝐾 − 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1))) | |
13 | 3, 4, 11, 12 | syl3anc 1233 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1))) |
14 | fzss2 10009 | . . 3 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1))) | |
15 | 13, 14 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1))) |
16 | fzoval 10093 | . . 3 ⊢ (𝐾 ∈ ℤ → (𝑀..^𝐾) = (𝑀...(𝐾 − 1))) | |
17 | 1, 16 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) = (𝑀...(𝐾 − 1))) |
18 | eluzelz 9485 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
19 | fzoval 10093 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
20 | 18, 19 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
21 | 15, 17, 20 | 3sstr4d 3192 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 ‘cfv 5196 (class class class)co 5851 ℂcc 7761 1c1 7764 + caddc 7766 − cmin 8079 ℤcz 9201 ℤ≥cuz 9476 ...cfz 9954 ..^cfzo 10087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-addcom 7863 ax-addass 7865 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-0id 7871 ax-rnegex 7872 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-ltadd 7879 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-inn 8868 df-n0 9125 df-z 9202 df-uz 9477 df-fz 9955 df-fzo 10088 |
This theorem is referenced by: fzossrbm1 10118 fzosplit 10122 fzossfzop1 10157 |
Copyright terms: Public domain | W3C validator |