ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oawordi GIF version

Theorem oawordi 6555
Description: Weak ordering property of ordinal addition. (Contributed by Jim Kingdon, 27-Jul-2019.)
Assertion
Ref Expression
oawordi ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))

Proof of Theorem oawordi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oafnex 6530 . . . . 5 (𝑥 ∈ V ↦ suc 𝑥) Fn V
21a1i 9 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝑥 ∈ V ↦ suc 𝑥) Fn V)
3 simpl3 1005 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐶 ∈ On)
4 simpl1 1003 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐴 ∈ On)
5 simpl2 1004 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐵 ∈ On)
6 simpr 110 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐴𝐵)
72, 3, 4, 5, 6rdgss 6469 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴) ⊆ (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
83, 4jca 306 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 ∈ On ∧ 𝐴 ∈ On))
9 oav 6540 . . . 4 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴))
108, 9syl 14 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴))
113, 5jca 306 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 ∈ On ∧ 𝐵 ∈ On))
12 oav 6540 . . . 4 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
1311, 12syl 14 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
147, 10, 133sstr4d 3238 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))
1514ex 115 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2176  Vcvv 2772  wss 3166  cmpt 4105  Oncon0 4410  suc csuc 4412   Fn wfn 5266  cfv 5271  (class class class)co 5944  reccrdg 6455   +o coa 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-irdg 6456  df-oadd 6506
This theorem is referenced by:  oaword1  6557
  Copyright terms: Public domain W3C validator