ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oawordi GIF version

Theorem oawordi 6270
Description: Weak ordering property of ordinal addition. (Contributed by Jim Kingdon, 27-Jul-2019.)
Assertion
Ref Expression
oawordi ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))

Proof of Theorem oawordi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oafnex 6245 . . . . 5 (𝑥 ∈ V ↦ suc 𝑥) Fn V
21a1i 9 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝑥 ∈ V ↦ suc 𝑥) Fn V)
3 simpl3 951 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐶 ∈ On)
4 simpl1 949 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐴 ∈ On)
5 simpl2 950 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐵 ∈ On)
6 simpr 109 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐴𝐵)
72, 3, 4, 5, 6rdgss 6186 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴) ⊆ (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
83, 4jca 301 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 ∈ On ∧ 𝐴 ∈ On))
9 oav 6255 . . . 4 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴))
108, 9syl 14 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴))
113, 5jca 301 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 ∈ On ∧ 𝐵 ∈ On))
12 oav 6255 . . . 4 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
1311, 12syl 14 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
147, 10, 133sstr4d 3084 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))
1514ex 114 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 927   = wceq 1296  wcel 1445  Vcvv 2633  wss 3013  cmpt 3921  Oncon0 4214  suc csuc 4216   Fn wfn 5044  cfv 5049  (class class class)co 5690  reccrdg 6172   +o coa 6216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-recs 6108  df-irdg 6173  df-oadd 6223
This theorem is referenced by:  oaword1  6272
  Copyright terms: Public domain W3C validator