ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oawordi GIF version

Theorem oawordi 6615
Description: Weak ordering property of ordinal addition. (Contributed by Jim Kingdon, 27-Jul-2019.)
Assertion
Ref Expression
oawordi ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))

Proof of Theorem oawordi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oafnex 6590 . . . . 5 (𝑥 ∈ V ↦ suc 𝑥) Fn V
21a1i 9 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝑥 ∈ V ↦ suc 𝑥) Fn V)
3 simpl3 1026 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐶 ∈ On)
4 simpl1 1024 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐴 ∈ On)
5 simpl2 1025 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐵 ∈ On)
6 simpr 110 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐴𝐵)
72, 3, 4, 5, 6rdgss 6529 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴) ⊆ (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
83, 4jca 306 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 ∈ On ∧ 𝐴 ∈ On))
9 oav 6600 . . . 4 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴))
108, 9syl 14 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴))
113, 5jca 306 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 ∈ On ∧ 𝐵 ∈ On))
12 oav 6600 . . . 4 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
1311, 12syl 14 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
147, 10, 133sstr4d 3269 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))
1514ex 115 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  cmpt 4145  Oncon0 4454  suc csuc 4456   Fn wfn 5313  cfv 5318  (class class class)co 6001  reccrdg 6515   +o coa 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-recs 6451  df-irdg 6516  df-oadd 6566
This theorem is referenced by:  oaword1  6617
  Copyright terms: Public domain W3C validator