ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oawordi GIF version

Theorem oawordi 6369
Description: Weak ordering property of ordinal addition. (Contributed by Jim Kingdon, 27-Jul-2019.)
Assertion
Ref Expression
oawordi ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))

Proof of Theorem oawordi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oafnex 6344 . . . . 5 (𝑥 ∈ V ↦ suc 𝑥) Fn V
21a1i 9 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝑥 ∈ V ↦ suc 𝑥) Fn V)
3 simpl3 987 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐶 ∈ On)
4 simpl1 985 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐴 ∈ On)
5 simpl2 986 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐵 ∈ On)
6 simpr 109 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → 𝐴𝐵)
72, 3, 4, 5, 6rdgss 6284 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴) ⊆ (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
83, 4jca 304 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 ∈ On ∧ 𝐴 ∈ On))
9 oav 6354 . . . 4 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴))
108, 9syl 14 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐴))
113, 5jca 304 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 ∈ On ∧ 𝐵 ∈ On))
12 oav 6354 . . . 4 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
1311, 12syl 14 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐶)‘𝐵))
147, 10, 133sstr4d 3143 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))
1514ex 114 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  Vcvv 2687  wss 3072  cmpt 3993  Oncon0 4289  suc csuc 4291   Fn wfn 5122  cfv 5127  (class class class)co 5778  reccrdg 6270   +o coa 6314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-iord 4292  df-on 4294  df-suc 4297  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-ov 5781  df-oprab 5782  df-mpo 5783  df-recs 6206  df-irdg 6271  df-oadd 6321
This theorem is referenced by:  oaword1  6371
  Copyright terms: Public domain W3C validator