ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzoss1 GIF version

Theorem fzoss1 10247
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzoss1 (𝐾 ∈ (ℤ𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁))

Proof of Theorem fzoss1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzoel2 10221 . . . . 5 (𝑥 ∈ (𝐾..^𝑁) → 𝑁 ∈ ℤ)
21adantl 277 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝐾..^𝑁)) → 𝑁 ∈ ℤ)
3 fzss1 10138 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (𝐾...(𝑁 − 1)) ⊆ (𝑀...(𝑁 − 1)))
43adantr 276 . . . . . . 7 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾...(𝑁 − 1)) ⊆ (𝑀...(𝑁 − 1)))
5 fzoval 10223 . . . . . . . 8 (𝑁 ∈ ℤ → (𝐾..^𝑁) = (𝐾...(𝑁 − 1)))
65adantl 277 . . . . . . 7 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾..^𝑁) = (𝐾...(𝑁 − 1)))
7 fzoval 10223 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
87adantl 277 . . . . . . 7 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
94, 6, 83sstr4d 3228 . . . . . 6 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁))
109sseld 3182 . . . . 5 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝐾..^𝑁) → 𝑥 ∈ (𝑀..^𝑁)))
1110impancom 260 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝐾..^𝑁)) → (𝑁 ∈ ℤ → 𝑥 ∈ (𝑀..^𝑁)))
122, 11mpd 13 . . 3 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (𝐾..^𝑁)) → 𝑥 ∈ (𝑀..^𝑁))
1312ex 115 . 2 (𝐾 ∈ (ℤ𝑀) → (𝑥 ∈ (𝐾..^𝑁) → 𝑥 ∈ (𝑀..^𝑁)))
1413ssrdv 3189 1 (𝐾 ∈ (ℤ𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wss 3157  cfv 5258  (class class class)co 5922  1c1 7880  cmin 8197  cz 9326  cuz 9601  ...cfz 10083  ..^cfzo 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  fzo0ss1  10250  fzosplit  10253  zpnn0elfzo  10283  fzofzp1  10303  fzostep1  10313  fsumparts  11635
  Copyright terms: Public domain W3C validator