![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucinc2 | GIF version |
Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.) |
Ref | Expression |
---|---|
sucinc.1 | ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) |
Ref | Expression |
---|---|
sucinc2 | ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4407 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
2 | ordsucss 4537 | . . . . 5 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
4 | 3 | imp 124 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ 𝐵) |
5 | sssucid 4447 | . . 3 ⊢ 𝐵 ⊆ suc 𝐵 | |
6 | 4, 5 | sstrdi 3192 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ suc 𝐵) |
7 | onelon 4416 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) | |
8 | elex 2771 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
9 | sucexg 4531 | . . . 4 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
10 | suceq 4434 | . . . . 5 ⊢ (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴) | |
11 | sucinc.1 | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) | |
12 | 10, 11 | fvmptg 5634 | . . . 4 ⊢ ((𝐴 ∈ V ∧ suc 𝐴 ∈ V) → (𝐹‘𝐴) = suc 𝐴) |
13 | 8, 9, 12 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = suc 𝐴) |
14 | 7, 13 | syl 14 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = suc 𝐴) |
15 | elex 2771 | . . . 4 ⊢ (𝐵 ∈ On → 𝐵 ∈ V) | |
16 | sucexg 4531 | . . . 4 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ V) | |
17 | suceq 4434 | . . . . 5 ⊢ (𝑧 = 𝐵 → suc 𝑧 = suc 𝐵) | |
18 | 17, 11 | fvmptg 5634 | . . . 4 ⊢ ((𝐵 ∈ V ∧ suc 𝐵 ∈ V) → (𝐹‘𝐵) = suc 𝐵) |
19 | 15, 16, 18 | syl2anc 411 | . . 3 ⊢ (𝐵 ∈ On → (𝐹‘𝐵) = suc 𝐵) |
20 | 19 | adantr 276 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐵) = suc 𝐵) |
21 | 6, 14, 20 | 3sstr4d 3225 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 ↦ cmpt 4091 Ord word 4394 Oncon0 4395 suc csuc 4397 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |