| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucinc2 | GIF version | ||
| Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| sucinc.1 | ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) |
| Ref | Expression |
|---|---|
| sucinc2 | ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4440 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 2 | ordsucss 4570 | . . . . 5 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 4 | 3 | imp 124 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ 𝐵) |
| 5 | sssucid 4480 | . . 3 ⊢ 𝐵 ⊆ suc 𝐵 | |
| 6 | 4, 5 | sstrdi 3213 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ suc 𝐵) |
| 7 | onelon 4449 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) | |
| 8 | elex 2788 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
| 9 | sucexg 4564 | . . . 4 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 10 | suceq 4467 | . . . . 5 ⊢ (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴) | |
| 11 | sucinc.1 | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) | |
| 12 | 10, 11 | fvmptg 5678 | . . . 4 ⊢ ((𝐴 ∈ V ∧ suc 𝐴 ∈ V) → (𝐹‘𝐴) = suc 𝐴) |
| 13 | 8, 9, 12 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = suc 𝐴) |
| 14 | 7, 13 | syl 14 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = suc 𝐴) |
| 15 | elex 2788 | . . . 4 ⊢ (𝐵 ∈ On → 𝐵 ∈ V) | |
| 16 | sucexg 4564 | . . . 4 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ V) | |
| 17 | suceq 4467 | . . . . 5 ⊢ (𝑧 = 𝐵 → suc 𝑧 = suc 𝐵) | |
| 18 | 17, 11 | fvmptg 5678 | . . . 4 ⊢ ((𝐵 ∈ V ∧ suc 𝐵 ∈ V) → (𝐹‘𝐵) = suc 𝐵) |
| 19 | 15, 16, 18 | syl2anc 411 | . . 3 ⊢ (𝐵 ∈ On → (𝐹‘𝐵) = suc 𝐵) |
| 20 | 19 | adantr 276 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐵) = suc 𝐵) |
| 21 | 6, 14, 20 | 3sstr4d 3246 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ⊆ wss 3174 ↦ cmpt 4121 Ord word 4427 Oncon0 4428 suc csuc 4430 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |