ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc2 GIF version

Theorem sucinc2 6499
Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.)
Hypothesis
Ref Expression
sucinc.1 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
Assertion
Ref Expression
sucinc2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem sucinc2
StepHypRef Expression
1 eloni 4406 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 ordsucss 4536 . . . . 5 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
31, 2syl 14 . . . 4 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
43imp 124 . . 3 ((𝐵 ∈ On ∧ 𝐴𝐵) → suc 𝐴𝐵)
5 sssucid 4446 . . 3 𝐵 ⊆ suc 𝐵
64, 5sstrdi 3191 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → suc 𝐴 ⊆ suc 𝐵)
7 onelon 4415 . . 3 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
8 elex 2771 . . . 4 (𝐴 ∈ On → 𝐴 ∈ V)
9 sucexg 4530 . . . 4 (𝐴 ∈ On → suc 𝐴 ∈ V)
10 suceq 4433 . . . . 5 (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴)
11 sucinc.1 . . . . 5 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
1210, 11fvmptg 5633 . . . 4 ((𝐴 ∈ V ∧ suc 𝐴 ∈ V) → (𝐹𝐴) = suc 𝐴)
138, 9, 12syl2anc 411 . . 3 (𝐴 ∈ On → (𝐹𝐴) = suc 𝐴)
147, 13syl 14 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐴) = suc 𝐴)
15 elex 2771 . . . 4 (𝐵 ∈ On → 𝐵 ∈ V)
16 sucexg 4530 . . . 4 (𝐵 ∈ On → suc 𝐵 ∈ V)
17 suceq 4433 . . . . 5 (𝑧 = 𝐵 → suc 𝑧 = suc 𝐵)
1817, 11fvmptg 5633 . . . 4 ((𝐵 ∈ V ∧ suc 𝐵 ∈ V) → (𝐹𝐵) = suc 𝐵)
1915, 16, 18syl2anc 411 . . 3 (𝐵 ∈ On → (𝐹𝐵) = suc 𝐵)
2019adantr 276 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐵) = suc 𝐵)
216, 14, 203sstr4d 3224 1 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  wss 3153  cmpt 4090  Ord word 4393  Oncon0 4394  suc csuc 4396  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator