ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc2 GIF version

Theorem sucinc2 6425
Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.)
Hypothesis
Ref Expression
sucinc.1 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
Assertion
Ref Expression
sucinc2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem sucinc2
StepHypRef Expression
1 eloni 4360 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 ordsucss 4488 . . . . 5 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
31, 2syl 14 . . . 4 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
43imp 123 . . 3 ((𝐵 ∈ On ∧ 𝐴𝐵) → suc 𝐴𝐵)
5 sssucid 4400 . . 3 𝐵 ⊆ suc 𝐵
64, 5sstrdi 3159 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → suc 𝐴 ⊆ suc 𝐵)
7 onelon 4369 . . 3 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
8 elex 2741 . . . 4 (𝐴 ∈ On → 𝐴 ∈ V)
9 sucexg 4482 . . . 4 (𝐴 ∈ On → suc 𝐴 ∈ V)
10 suceq 4387 . . . . 5 (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴)
11 sucinc.1 . . . . 5 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
1210, 11fvmptg 5572 . . . 4 ((𝐴 ∈ V ∧ suc 𝐴 ∈ V) → (𝐹𝐴) = suc 𝐴)
138, 9, 12syl2anc 409 . . 3 (𝐴 ∈ On → (𝐹𝐴) = suc 𝐴)
147, 13syl 14 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐴) = suc 𝐴)
15 elex 2741 . . . 4 (𝐵 ∈ On → 𝐵 ∈ V)
16 sucexg 4482 . . . 4 (𝐵 ∈ On → suc 𝐵 ∈ V)
17 suceq 4387 . . . . 5 (𝑧 = 𝐵 → suc 𝑧 = suc 𝐵)
1817, 11fvmptg 5572 . . . 4 ((𝐵 ∈ V ∧ suc 𝐵 ∈ V) → (𝐹𝐵) = suc 𝐵)
1915, 16, 18syl2anc 409 . . 3 (𝐵 ∈ On → (𝐹𝐵) = suc 𝐵)
2019adantr 274 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐵) = suc 𝐵)
216, 14, 203sstr4d 3192 1 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  wss 3121  cmpt 4050  Ord word 4347  Oncon0 4348  suc csuc 4350  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator