| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucinc2 | GIF version | ||
| Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| sucinc.1 | ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) |
| Ref | Expression |
|---|---|
| sucinc2 | ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4465 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 2 | ordsucss 4595 | . . . . 5 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 4 | 3 | imp 124 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ 𝐵) |
| 5 | sssucid 4505 | . . 3 ⊢ 𝐵 ⊆ suc 𝐵 | |
| 6 | 4, 5 | sstrdi 3236 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ suc 𝐵) |
| 7 | onelon 4474 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) | |
| 8 | elex 2811 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
| 9 | sucexg 4589 | . . . 4 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 10 | suceq 4492 | . . . . 5 ⊢ (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴) | |
| 11 | sucinc.1 | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) | |
| 12 | 10, 11 | fvmptg 5709 | . . . 4 ⊢ ((𝐴 ∈ V ∧ suc 𝐴 ∈ V) → (𝐹‘𝐴) = suc 𝐴) |
| 13 | 8, 9, 12 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = suc 𝐴) |
| 14 | 7, 13 | syl 14 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = suc 𝐴) |
| 15 | elex 2811 | . . . 4 ⊢ (𝐵 ∈ On → 𝐵 ∈ V) | |
| 16 | sucexg 4589 | . . . 4 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ V) | |
| 17 | suceq 4492 | . . . . 5 ⊢ (𝑧 = 𝐵 → suc 𝑧 = suc 𝐵) | |
| 18 | 17, 11 | fvmptg 5709 | . . . 4 ⊢ ((𝐵 ∈ V ∧ suc 𝐵 ∈ V) → (𝐹‘𝐵) = suc 𝐵) |
| 19 | 15, 16, 18 | syl2anc 411 | . . 3 ⊢ (𝐵 ∈ On → (𝐹‘𝐵) = suc 𝐵) |
| 20 | 19 | adantr 276 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐵) = suc 𝐵) |
| 21 | 6, 14, 20 | 3sstr4d 3269 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ↦ cmpt 4144 Ord word 4452 Oncon0 4453 suc csuc 4455 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |