![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucinc2 | GIF version |
Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.) |
Ref | Expression |
---|---|
sucinc.1 | ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) |
Ref | Expression |
---|---|
sucinc2 | ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4377 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
2 | ordsucss 4505 | . . . . 5 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
4 | 3 | imp 124 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ 𝐵) |
5 | sssucid 4417 | . . 3 ⊢ 𝐵 ⊆ suc 𝐵 | |
6 | 4, 5 | sstrdi 3169 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ suc 𝐵) |
7 | onelon 4386 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) | |
8 | elex 2750 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
9 | sucexg 4499 | . . . 4 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
10 | suceq 4404 | . . . . 5 ⊢ (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴) | |
11 | sucinc.1 | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) | |
12 | 10, 11 | fvmptg 5594 | . . . 4 ⊢ ((𝐴 ∈ V ∧ suc 𝐴 ∈ V) → (𝐹‘𝐴) = suc 𝐴) |
13 | 8, 9, 12 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = suc 𝐴) |
14 | 7, 13 | syl 14 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = suc 𝐴) |
15 | elex 2750 | . . . 4 ⊢ (𝐵 ∈ On → 𝐵 ∈ V) | |
16 | sucexg 4499 | . . . 4 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ V) | |
17 | suceq 4404 | . . . . 5 ⊢ (𝑧 = 𝐵 → suc 𝑧 = suc 𝐵) | |
18 | 17, 11 | fvmptg 5594 | . . . 4 ⊢ ((𝐵 ∈ V ∧ suc 𝐵 ∈ V) → (𝐹‘𝐵) = suc 𝐵) |
19 | 15, 16, 18 | syl2anc 411 | . . 3 ⊢ (𝐵 ∈ On → (𝐹‘𝐵) = suc 𝐵) |
20 | 19 | adantr 276 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐵) = suc 𝐵) |
21 | 6, 14, 20 | 3sstr4d 3202 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ⊆ wss 3131 ↦ cmpt 4066 Ord word 4364 Oncon0 4365 suc csuc 4367 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |