Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucinc2 | GIF version |
Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.) |
Ref | Expression |
---|---|
sucinc.1 | ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) |
Ref | Expression |
---|---|
sucinc2 | ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4353 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
2 | ordsucss 4481 | . . . . 5 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
4 | 3 | imp 123 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ 𝐵) |
5 | sssucid 4393 | . . 3 ⊢ 𝐵 ⊆ suc 𝐵 | |
6 | 4, 5 | sstrdi 3154 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ suc 𝐵) |
7 | onelon 4362 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) | |
8 | elex 2737 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
9 | sucexg 4475 | . . . 4 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
10 | suceq 4380 | . . . . 5 ⊢ (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴) | |
11 | sucinc.1 | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) | |
12 | 10, 11 | fvmptg 5562 | . . . 4 ⊢ ((𝐴 ∈ V ∧ suc 𝐴 ∈ V) → (𝐹‘𝐴) = suc 𝐴) |
13 | 8, 9, 12 | syl2anc 409 | . . 3 ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = suc 𝐴) |
14 | 7, 13 | syl 14 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = suc 𝐴) |
15 | elex 2737 | . . . 4 ⊢ (𝐵 ∈ On → 𝐵 ∈ V) | |
16 | sucexg 4475 | . . . 4 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ V) | |
17 | suceq 4380 | . . . . 5 ⊢ (𝑧 = 𝐵 → suc 𝑧 = suc 𝐵) | |
18 | 17, 11 | fvmptg 5562 | . . . 4 ⊢ ((𝐵 ∈ V ∧ suc 𝐵 ∈ V) → (𝐹‘𝐵) = suc 𝐵) |
19 | 15, 16, 18 | syl2anc 409 | . . 3 ⊢ (𝐵 ∈ On → (𝐹‘𝐵) = suc 𝐵) |
20 | 19 | adantr 274 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐵) = suc 𝐵) |
21 | 6, 14, 20 | 3sstr4d 3187 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 ↦ cmpt 4043 Ord word 4340 Oncon0 4341 suc csuc 4343 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |