| Step | Hyp | Ref
| Expression |
| 1 | | ltexnqi 7493 |
. . . . 5
⊢ (𝑠 <Q
𝑟 → ∃𝑦 ∈ Q (𝑠 +Q
𝑦) = 𝑟) |
| 2 | 1 | adantl 277 |
. . . 4
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) → ∃𝑦 ∈ Q (𝑠 +Q 𝑦) = 𝑟) |
| 3 | | subhalfnqq 7498 |
. . . . . 6
⊢ (𝑦 ∈ Q →
∃𝑥 ∈
Q (𝑥
+Q 𝑥) <Q 𝑦) |
| 4 | 3 | ad2antrl 490 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) → ∃𝑥 ∈ Q (𝑥 +Q 𝑥) <Q
𝑦) |
| 5 | | archrecnq 7747 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
∃𝑚 ∈
N (*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥) |
| 6 | 5 | ad2antrl 490 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) → ∃𝑚 ∈ N
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥) |
| 7 | | simprr 531 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥) |
| 8 | | nnnq 7506 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ N →
[〈𝑚,
1o〉] ~Q ∈
Q) |
| 9 | | recclnq 7476 |
. . . . . . . . . . . . . . 15
⊢
([〈𝑚,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) |
| 10 | 8, 9 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ N →
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) |
| 11 | 10 | ad2antrl 490 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) |
| 12 | | simplrl 535 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → 𝑥 ∈ Q) |
| 13 | | lt2addnq 7488 |
. . . . . . . . . . . . 13
⊢
((((*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q ∧ 𝑥 ∈ Q) ∧
((*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q ∧ 𝑥 ∈ Q)) →
(((*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥 ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝑥 +Q
𝑥))) |
| 14 | 11, 12, 11, 12, 13 | syl22anc 1250 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
(((*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥 ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝑥 +Q
𝑥))) |
| 15 | 7, 7, 14 | mp2and 433 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝑥 +Q
𝑥)) |
| 16 | | simplrr 536 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑥 +Q 𝑥) <Q
𝑦) |
| 17 | | ltsonq 7482 |
. . . . . . . . . . . 12
⊢
<Q Or Q |
| 18 | | ltrelnq 7449 |
. . . . . . . . . . . 12
⊢
<Q ⊆ (Q ×
Q) |
| 19 | 17, 18 | sotri 5066 |
. . . . . . . . . . 11
⊢
((((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝑥 +Q
𝑥) ∧ (𝑥 +Q
𝑥)
<Q 𝑦) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑦) |
| 20 | 15, 16, 19 | syl2anc 411 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑦) |
| 21 | | simplrl 535 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) → 𝑠 ∈ Q) |
| 22 | 21 | ad3antrrr 492 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → 𝑠 ∈ Q) |
| 23 | | ltanqi 7486 |
. . . . . . . . . 10
⊢
((((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑦 ∧ 𝑠 ∈ Q) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q (𝑠 +Q
𝑦)) |
| 24 | 20, 22, 23 | syl2anc 411 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q (𝑠 +Q
𝑦)) |
| 25 | | simprr 531 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) → (𝑠 +Q 𝑦) = 𝑟) |
| 26 | 25 | ad2antrr 488 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 +Q 𝑦) = 𝑟) |
| 27 | 24, 26 | breqtrd 4060 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q 𝑟) |
| 28 | | addclnq 7459 |
. . . . . . . . . . 11
⊢
(((*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
| 29 | 11, 11, 28 | syl2anc 411 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
| 30 | | addclnq 7459 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ Q ∧
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∈ Q) |
| 31 | 22, 29, 30 | syl2anc 411 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∈ Q) |
| 32 | | simplrr 536 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) → 𝑟 ∈ Q) |
| 33 | 32 | ad3antrrr 492 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → 𝑟 ∈ Q) |
| 34 | | caucvgpr.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:N⟶Q) |
| 35 | 34 | ad5antr 496 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → 𝐹:N⟶Q) |
| 36 | | simprl 529 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → 𝑚 ∈ N) |
| 37 | 35, 36 | ffvelcdmd 5701 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝐹‘𝑚) ∈ Q) |
| 38 | | addclnq 7459 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑚) ∈ Q ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) → ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
| 39 | 37, 11, 38 | syl2anc 411 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
| 40 | | sowlin 4356 |
. . . . . . . . . 10
⊢ ((
<Q Or Q ∧ ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∈ Q ∧ 𝑟 ∈ Q ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q)) → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q 𝑟 → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∨ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟))) |
| 41 | 17, 40 | mpan 424 |
. . . . . . . . 9
⊢ (((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∈ Q ∧ 𝑟 ∈ Q ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q 𝑟 → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∨ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟))) |
| 42 | 31, 33, 39, 41 | syl3anc 1249 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q 𝑟 → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∨ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟))) |
| 43 | 27, 42 | mpd 13 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∨ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟)) |
| 44 | 22 | adantr 276 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → 𝑠 ∈ Q) |
| 45 | | simplrl 535 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → 𝑚 ∈ N) |
| 46 | | simpr 110 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) |
| 47 | 11 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) →
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) |
| 48 | | addassnqg 7466 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) → ((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) = (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )))) |
| 49 | 44, 47, 47, 48 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → ((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) = (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )))) |
| 50 | 49 | breq1d 4044 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → (((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ↔ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )))) |
| 51 | 46, 50 | mpbird 167 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → ((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) |
| 52 | | ltanqg 7484 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
| 53 | 52 | adantl 277 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
| 54 | | addclnq 7459 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) → (𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
| 55 | 44, 47, 54 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → (𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
| 56 | 37 | adantr 276 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → (𝐹‘𝑚) ∈ Q) |
| 57 | | addcomnqg 7465 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 58 | 57 | adantl 277 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 59 | 53, 55, 56, 47, 58 | caovord2d 6097 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → ((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝐹‘𝑚) ↔ ((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )))) |
| 60 | 51, 59 | mpbird 167 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → (𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝐹‘𝑚)) |
| 61 | | opeq1 3809 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑚 → 〈𝑗, 1o〉 = 〈𝑚,
1o〉) |
| 62 | 61 | eceq1d 6637 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑚 → [〈𝑗, 1o〉]
~Q = [〈𝑚, 1o〉]
~Q ) |
| 63 | 62 | fveq2d 5565 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑚 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝑚, 1o〉]
~Q )) |
| 64 | 63 | oveq2d 5941 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) |
| 65 | | fveq2 5561 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → (𝐹‘𝑗) = (𝐹‘𝑚)) |
| 66 | 64, 65 | breq12d 4047 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑚 → ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝐹‘𝑚))) |
| 67 | 66 | rspcev 2868 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝐹‘𝑚)) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
| 68 | 45, 60, 67 | syl2anc 411 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
| 69 | | oveq1 5932 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
| 70 | 69 | breq1d 4044 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 71 | 70 | rexbidv 2498 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑠 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 72 | | caucvgpr.lim |
. . . . . . . . . . . . 13
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 |
| 73 | 72 | fveq2i 5564 |
. . . . . . . . . . . 12
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) |
| 74 | | nqex 7447 |
. . . . . . . . . . . . . 14
⊢
Q ∈ V |
| 75 | 74 | rabex 4178 |
. . . . . . . . . . . . 13
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V |
| 76 | 74 | rabex 4178 |
. . . . . . . . . . . . 13
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V |
| 77 | 75, 76 | op1st 6213 |
. . . . . . . . . . . 12
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
| 78 | 73, 77 | eqtri 2217 |
. . . . . . . . . . 11
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
| 79 | 71, 78 | elrab2 2923 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 80 | 44, 68, 79 | sylanbrc 417 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → 𝑠 ∈ (1st ‘𝐿)) |
| 81 | 80 | ex 115 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) → 𝑠 ∈ (1st ‘𝐿))) |
| 82 | 33 | adantr 276 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟) → 𝑟 ∈ Q) |
| 83 | 65, 63 | oveq12d 5943 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) |
| 84 | 83 | breq1d 4044 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑚 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟 ↔ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟)) |
| 85 | 84 | rspcev 2868 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ N ∧
((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟) |
| 86 | 36, 85 | sylan 283 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟) |
| 87 | | breq2 4038 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑟 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) |
| 88 | 87 | rexbidv 2498 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑟 → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) |
| 89 | 72 | fveq2i 5564 |
. . . . . . . . . . . 12
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) |
| 90 | 75, 76 | op2nd 6214 |
. . . . . . . . . . . 12
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} |
| 91 | 89, 90 | eqtri 2217 |
. . . . . . . . . . 11
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} |
| 92 | 88, 91 | elrab2 2923 |
. . . . . . . . . 10
⊢ (𝑟 ∈ (2nd
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) |
| 93 | 82, 86, 92 | sylanbrc 417 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟) → 𝑟 ∈ (2nd ‘𝐿)) |
| 94 | 93 | ex 115 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟 → 𝑟 ∈ (2nd ‘𝐿))) |
| 95 | 81, 94 | orim12d 787 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∨ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))) |
| 96 | 43, 95 | mpd 13 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿))) |
| 97 | 6, 96 | rexlimddv 2619 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿))) |
| 98 | 4, 97 | rexlimddv 2619 |
. . . 4
⊢ ((((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿))) |
| 99 | 2, 98 | rexlimddv 2619 |
. . 3
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿))) |
| 100 | 99 | ex 115 |
. 2
⊢ ((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) →
(𝑠
<Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))) |
| 101 | 100 | ralrimivva 2579 |
1
⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑟 ∈ Q (𝑠 <Q
𝑟 → (𝑠 ∈ (1st
‘𝐿) ∨ 𝑟 ∈ (2nd
‘𝐿)))) |