Step | Hyp | Ref
| Expression |
1 | | ltexnqi 7371 |
. . . . 5
⊢ (𝑠 <Q
𝑟 → ∃𝑦 ∈ Q (𝑠 +Q
𝑦) = 𝑟) |
2 | 1 | adantl 275 |
. . . 4
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) → ∃𝑦 ∈ Q (𝑠 +Q 𝑦) = 𝑟) |
3 | | subhalfnqq 7376 |
. . . . . 6
⊢ (𝑦 ∈ Q →
∃𝑥 ∈
Q (𝑥
+Q 𝑥) <Q 𝑦) |
4 | 3 | ad2antrl 487 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) → ∃𝑥 ∈ Q (𝑥 +Q 𝑥) <Q
𝑦) |
5 | | archrecnq 7625 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
∃𝑚 ∈
N (*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥) |
6 | 5 | ad2antrl 487 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) → ∃𝑚 ∈ N
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥) |
7 | | simprr 527 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥) |
8 | | nnnq 7384 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ N →
[〈𝑚,
1o〉] ~Q ∈
Q) |
9 | | recclnq 7354 |
. . . . . . . . . . . . . . 15
⊢
([〈𝑚,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) |
10 | 8, 9 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ N →
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) |
11 | 10 | ad2antrl 487 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) |
12 | | simplrl 530 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → 𝑥 ∈ Q) |
13 | | lt2addnq 7366 |
. . . . . . . . . . . . 13
⊢
((((*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q ∧ 𝑥 ∈ Q) ∧
((*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q ∧ 𝑥 ∈ Q)) →
(((*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥 ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝑥 +Q
𝑥))) |
14 | 11, 12, 11, 12, 13 | syl22anc 1234 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
(((*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥 ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝑥 +Q
𝑥))) |
15 | 7, 7, 14 | mp2and 431 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝑥 +Q
𝑥)) |
16 | | simplrr 531 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑥 +Q 𝑥) <Q
𝑦) |
17 | | ltsonq 7360 |
. . . . . . . . . . . 12
⊢
<Q Or Q |
18 | | ltrelnq 7327 |
. . . . . . . . . . . 12
⊢
<Q ⊆ (Q ×
Q) |
19 | 17, 18 | sotri 5006 |
. . . . . . . . . . 11
⊢
((((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝑥 +Q
𝑥) ∧ (𝑥 +Q
𝑥)
<Q 𝑦) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑦) |
20 | 15, 16, 19 | syl2anc 409 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑦) |
21 | | simplrl 530 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) → 𝑠 ∈ Q) |
22 | 21 | ad3antrrr 489 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → 𝑠 ∈ Q) |
23 | | ltanqi 7364 |
. . . . . . . . . 10
⊢
((((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑦 ∧ 𝑠 ∈ Q) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q (𝑠 +Q
𝑦)) |
24 | 20, 22, 23 | syl2anc 409 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q (𝑠 +Q
𝑦)) |
25 | | simprr 527 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) → (𝑠 +Q 𝑦) = 𝑟) |
26 | 25 | ad2antrr 485 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 +Q 𝑦) = 𝑟) |
27 | 24, 26 | breqtrd 4015 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q 𝑟) |
28 | | addclnq 7337 |
. . . . . . . . . . 11
⊢
(((*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
29 | 11, 11, 28 | syl2anc 409 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) →
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
30 | | addclnq 7337 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ Q ∧
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∈ Q) |
31 | 22, 29, 30 | syl2anc 409 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∈ Q) |
32 | | simplrr 531 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) → 𝑟 ∈ Q) |
33 | 32 | ad3antrrr 489 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → 𝑟 ∈ Q) |
34 | | caucvgpr.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:N⟶Q) |
35 | 34 | ad5antr 493 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → 𝐹:N⟶Q) |
36 | | simprl 526 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → 𝑚 ∈ N) |
37 | 35, 36 | ffvelrnd 5632 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝐹‘𝑚) ∈ Q) |
38 | | addclnq 7337 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑚) ∈ Q ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) → ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
39 | 37, 11, 38 | syl2anc 409 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
40 | | sowlin 4305 |
. . . . . . . . . 10
⊢ ((
<Q Or Q ∧ ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∈ Q ∧ 𝑟 ∈ Q ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q)) → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q 𝑟 → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∨ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟))) |
41 | 17, 40 | mpan 422 |
. . . . . . . . 9
⊢ (((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∈ Q ∧ 𝑟 ∈ Q ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q 𝑟 → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∨ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟))) |
42 | 31, 33, 39, 41 | syl3anc 1233 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q 𝑟 → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∨ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟))) |
43 | 27, 42 | mpd 13 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∨ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟)) |
44 | 22 | adantr 274 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → 𝑠 ∈ Q) |
45 | | simplrl 530 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → 𝑚 ∈ N) |
46 | | simpr 109 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) |
47 | 11 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) →
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) |
48 | | addassnqg 7344 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) → ((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) = (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )))) |
49 | 44, 47, 47, 48 | syl3anc 1233 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → ((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) = (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )))) |
50 | 49 | breq1d 3999 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → (((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ↔ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )))) |
51 | 46, 50 | mpbird 166 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → ((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) |
52 | | ltanqg 7362 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
53 | 52 | adantl 275 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
54 | | addclnq 7337 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) → (𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
55 | 44, 47, 54 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → (𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) |
56 | 37 | adantr 274 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → (𝐹‘𝑚) ∈ Q) |
57 | | addcomnqg 7343 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
58 | 57 | adantl 275 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
59 | 53, 55, 56, 47, 58 | caovord2d 6022 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → ((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝐹‘𝑚) ↔ ((𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )))) |
60 | 51, 59 | mpbird 166 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → (𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝐹‘𝑚)) |
61 | | opeq1 3765 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑚 → 〈𝑗, 1o〉 = 〈𝑚,
1o〉) |
62 | 61 | eceq1d 6549 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑚 → [〈𝑗, 1o〉]
~Q = [〈𝑚, 1o〉]
~Q ) |
63 | 62 | fveq2d 5500 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑚 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝑚, 1o〉]
~Q )) |
64 | 63 | oveq2d 5869 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) |
65 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → (𝐹‘𝑗) = (𝐹‘𝑚)) |
66 | 64, 65 | breq12d 4002 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑚 → ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝐹‘𝑚))) |
67 | 66 | rspcev 2834 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ N ∧
(𝑠
+Q (*Q‘[〈𝑚, 1o〉]
~Q )) <Q (𝐹‘𝑚)) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
68 | 45, 60, 67 | syl2anc 409 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
69 | | oveq1 5860 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
70 | 69 | breq1d 3999 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
71 | 70 | rexbidv 2471 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑠 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
72 | | caucvgpr.lim |
. . . . . . . . . . . . 13
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 |
73 | 72 | fveq2i 5499 |
. . . . . . . . . . . 12
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) |
74 | | nqex 7325 |
. . . . . . . . . . . . . 14
⊢
Q ∈ V |
75 | 74 | rabex 4133 |
. . . . . . . . . . . . 13
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V |
76 | 74 | rabex 4133 |
. . . . . . . . . . . . 13
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V |
77 | 75, 76 | op1st 6125 |
. . . . . . . . . . . 12
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
78 | 73, 77 | eqtri 2191 |
. . . . . . . . . . 11
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
79 | 71, 78 | elrab2 2889 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
80 | 44, 68, 79 | sylanbrc 415 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ (𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) → 𝑠 ∈ (1st ‘𝐿)) |
81 | 80 | ex 114 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → ((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) → 𝑠 ∈ (1st ‘𝐿))) |
82 | 33 | adantr 274 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟) → 𝑟 ∈ Q) |
83 | 65, 63 | oveq12d 5871 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) |
84 | 83 | breq1d 3999 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑚 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟 ↔ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟)) |
85 | 84 | rspcev 2834 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ N ∧
((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟) |
86 | 36, 85 | sylan 281 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟) |
87 | | breq2 3993 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑟 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) |
88 | 87 | rexbidv 2471 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑟 → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) |
89 | 72 | fveq2i 5499 |
. . . . . . . . . . . 12
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) |
90 | 75, 76 | op2nd 6126 |
. . . . . . . . . . . 12
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} |
91 | 89, 90 | eqtri 2191 |
. . . . . . . . . . 11
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} |
92 | 88, 91 | elrab2 2889 |
. . . . . . . . . 10
⊢ (𝑟 ∈ (2nd
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) |
93 | 82, 86, 92 | sylanbrc 415 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟) → 𝑟 ∈ (2nd ‘𝐿)) |
94 | 93 | ex 114 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟 → 𝑟 ∈ (2nd ‘𝐿))) |
95 | 81, 94 | orim12d 781 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (((𝑠 +Q
((*Q‘[〈𝑚, 1o〉]
~Q ) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) <Q ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∨ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑟) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))) |
96 | 43, 95 | mpd 13 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑚 ∈ N ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿))) |
97 | 6, 96 | rexlimddv 2592 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿))) |
98 | 4, 97 | rexlimddv 2592 |
. . . 4
⊢ ((((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑟)) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿))) |
99 | 2, 98 | rexlimddv 2592 |
. . 3
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑠
<Q 𝑟) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿))) |
100 | 99 | ex 114 |
. 2
⊢ ((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) →
(𝑠
<Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))) |
101 | 100 | ralrimivva 2552 |
1
⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑟 ∈ Q (𝑠 <Q
𝑟 → (𝑠 ∈ (1st
‘𝐿) ∨ 𝑟 ∈ (2nd
‘𝐿)))) |