ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemloc GIF version

Theorem caucvgprlemloc 7823
Description: Lemma for caucvgpr 7830. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemloc (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑙   𝑢,𝐹   𝜑,𝑗,𝑟,𝑠   𝑠,𝑙   𝑢,𝑗,𝑟
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑟,𝑙)   𝐹(𝑘,𝑛,𝑠,𝑟)   𝐿(𝑢,𝑗,𝑘,𝑛,𝑠,𝑟,𝑙)

Proof of Theorem caucvgprlemloc
Dummy variables 𝑓 𝑔 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7557 . . . . 5 (𝑠 <Q 𝑟 → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑟)
21adantl 277 . . . 4 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑟)
3 subhalfnqq 7562 . . . . . 6 (𝑦Q → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
43ad2antrl 490 . . . . 5 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
5 archrecnq 7811 . . . . . . 7 (𝑥Q → ∃𝑚N (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)
65ad2antrl 490 . . . . . 6 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → ∃𝑚N (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)
7 simprr 531 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)
8 nnnq 7570 . . . . . . . . . . . . . . 15 (𝑚N → [⟨𝑚, 1o⟩] ~QQ)
9 recclnq 7540 . . . . . . . . . . . . . . 15 ([⟨𝑚, 1o⟩] ~QQ → (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q)
108, 9syl 14 . . . . . . . . . . . . . 14 (𝑚N → (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q)
1110ad2antrl 490 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q)
12 simplrl 535 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → 𝑥Q)
13 lt2addnq 7552 . . . . . . . . . . . . 13 ((((*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q𝑥Q) ∧ ((*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q𝑥Q)) → (((*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥 ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝑥 +Q 𝑥)))
1411, 12, 11, 12, 13syl22anc 1251 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (((*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥 ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝑥 +Q 𝑥)))
157, 7, 14mp2and 433 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝑥 +Q 𝑥))
16 simplrr 536 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑥 +Q 𝑥) <Q 𝑦)
17 ltsonq 7546 . . . . . . . . . . . 12 <Q Or Q
18 ltrelnq 7513 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
1917, 18sotri 5097 . . . . . . . . . . 11 ((((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝑥 +Q 𝑥) ∧ (𝑥 +Q 𝑥) <Q 𝑦) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑦)
2015, 16, 19syl2anc 411 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑦)
21 simplrl 535 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → 𝑠Q)
2221ad3antrrr 492 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → 𝑠Q)
23 ltanqi 7550 . . . . . . . . . 10 ((((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑦𝑠Q) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q (𝑠 +Q 𝑦))
2420, 22, 23syl2anc 411 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q (𝑠 +Q 𝑦))
25 simprr 531 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → (𝑠 +Q 𝑦) = 𝑟)
2625ad2antrr 488 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q 𝑦) = 𝑟)
2724, 26breqtrd 4085 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q 𝑟)
28 addclnq 7523 . . . . . . . . . . 11 (((*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
2911, 11, 28syl2anc 411 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
30 addclnq 7523 . . . . . . . . . 10 ((𝑠Q ∧ ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∈ Q)
3122, 29, 30syl2anc 411 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∈ Q)
32 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → 𝑟Q)
3332ad3antrrr 492 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → 𝑟Q)
34 caucvgpr.f . . . . . . . . . . . 12 (𝜑𝐹:NQ)
3534ad5antr 496 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → 𝐹:NQ)
36 simprl 529 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → 𝑚N)
3735, 36ffvelcdmd 5739 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝐹𝑚) ∈ Q)
38 addclnq 7523 . . . . . . . . . 10 (((𝐹𝑚) ∈ Q ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q) → ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
3937, 11, 38syl2anc 411 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
40 sowlin 4385 . . . . . . . . . 10 (( <Q Or Q ∧ ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∈ Q𝑟Q ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟)))
4117, 40mpan 424 . . . . . . . . 9 (((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∈ Q𝑟Q ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟)))
4231, 33, 39, 41syl3anc 1250 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟)))
4327, 42mpd 13 . . . . . . 7 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟))
4422adantr 276 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → 𝑠Q)
45 simplrl 535 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → 𝑚N)
46 simpr 110 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )))
4711adantr 276 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q)
48 addassnqg 7530 . . . . . . . . . . . . . . 15 ((𝑠Q ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q) → ((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) = (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))))
4944, 47, 47, 48syl3anc 1250 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) = (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))))
5049breq1d 4069 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ↔ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))))
5146, 50mpbird 167 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )))
52 ltanqg 7548 . . . . . . . . . . . . . 14 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
5352adantl 277 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
54 addclnq 7523 . . . . . . . . . . . . . 14 ((𝑠Q ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
5544, 47, 54syl2anc 411 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
5637adantr 276 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (𝐹𝑚) ∈ Q)
57 addcomnqg 7529 . . . . . . . . . . . . . 14 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5857adantl 277 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5953, 55, 56, 47, 58caovord2d 6139 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝐹𝑚) ↔ ((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))))
6051, 59mpbird 167 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝐹𝑚))
61 opeq1 3833 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ⟨𝑗, 1o⟩ = ⟨𝑚, 1o⟩)
6261eceq1d 6679 . . . . . . . . . . . . . . 15 (𝑗 = 𝑚 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑚, 1o⟩] ~Q )
6362fveq2d 5603 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑚, 1o⟩] ~Q ))
6463oveq2d 5983 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )))
65 fveq2 5599 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
6664, 65breq12d 4072 . . . . . . . . . . . 12 (𝑗 = 𝑚 → ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝐹𝑚)))
6766rspcev 2884 . . . . . . . . . . 11 ((𝑚N ∧ (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝐹𝑚)) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
6845, 60, 67syl2anc 411 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
69 oveq1 5974 . . . . . . . . . . . . 13 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
7069breq1d 4069 . . . . . . . . . . . 12 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
7170rexbidv 2509 . . . . . . . . . . 11 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
72 caucvgpr.lim . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
7372fveq2i 5602 . . . . . . . . . . . 12 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
74 nqex 7511 . . . . . . . . . . . . . 14 Q ∈ V
7574rabex 4204 . . . . . . . . . . . . 13 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
7674rabex 4204 . . . . . . . . . . . . 13 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
7775, 76op1st 6255 . . . . . . . . . . . 12 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
7873, 77eqtri 2228 . . . . . . . . . . 11 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
7971, 78elrab2 2939 . . . . . . . . . 10 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
8044, 68, 79sylanbrc 417 . . . . . . . . 9 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → 𝑠 ∈ (1st𝐿))
8180ex 115 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) → 𝑠 ∈ (1st𝐿)))
8233adantr 276 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟) → 𝑟Q)
8365, 63oveq12d 5985 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )))
8483breq1d 4069 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟 ↔ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟))
8584rspcev 2884 . . . . . . . . . . 11 ((𝑚N ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)
8636, 85sylan 283 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)
87 breq2 4063 . . . . . . . . . . . 12 (𝑢 = 𝑟 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟))
8887rexbidv 2509 . . . . . . . . . . 11 (𝑢 = 𝑟 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟))
8972fveq2i 5602 . . . . . . . . . . . 12 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
9075, 76op2nd 6256 . . . . . . . . . . . 12 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
9189, 90eqtri 2228 . . . . . . . . . . 11 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
9288, 91elrab2 2939 . . . . . . . . . 10 (𝑟 ∈ (2nd𝐿) ↔ (𝑟Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟))
9382, 86, 92sylanbrc 417 . . . . . . . . 9 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟) → 𝑟 ∈ (2nd𝐿))
9493ex 115 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟𝑟 ∈ (2nd𝐿)))
9581, 94orim12d 788 . . . . . . 7 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
9643, 95mpd 13 . . . . . 6 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
976, 96rexlimddv 2630 . . . . 5 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
984, 97rexlimddv 2630 . . . 4 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
992, 98rexlimddv 2630 . . 3 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
10099ex 115 . 2 ((𝜑 ∧ (𝑠Q𝑟Q)) → (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
101100ralrimivva 2590 1 (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2178  wral 2486  wrex 2487  {crab 2490  cop 3646   class class class wbr 4059   Or wor 4360  wf 5286  cfv 5290  (class class class)co 5967  1st c1st 6247  2nd c2nd 6248  1oc1o 6518  [cec 6641  Ncnpi 7420   <N clti 7423   ~Q ceq 7427  Qcnq 7428   +Q cplq 7430  *Qcrq 7432   <Q cltq 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501
This theorem is referenced by:  caucvgprlemcl  7824
  Copyright terms: Public domain W3C validator