ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemloc GIF version

Theorem caucvgprlemloc 7384
Description: Lemma for caucvgpr 7391. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemloc (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑙   𝑢,𝐹   𝜑,𝑗,𝑟,𝑠   𝑠,𝑙   𝑢,𝑗,𝑟
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑟,𝑙)   𝐹(𝑘,𝑛,𝑠,𝑟)   𝐿(𝑢,𝑗,𝑘,𝑛,𝑠,𝑟,𝑙)

Proof of Theorem caucvgprlemloc
Dummy variables 𝑓 𝑔 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7118 . . . . 5 (𝑠 <Q 𝑟 → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑟)
21adantl 273 . . . 4 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑟)
3 subhalfnqq 7123 . . . . . 6 (𝑦Q → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
43ad2antrl 477 . . . . 5 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
5 archrecnq 7372 . . . . . . 7 (𝑥Q → ∃𝑚N (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)
65ad2antrl 477 . . . . . 6 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → ∃𝑚N (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)
7 simprr 502 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)
8 nnnq 7131 . . . . . . . . . . . . . . 15 (𝑚N → [⟨𝑚, 1o⟩] ~QQ)
9 recclnq 7101 . . . . . . . . . . . . . . 15 ([⟨𝑚, 1o⟩] ~QQ → (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q)
108, 9syl 14 . . . . . . . . . . . . . 14 (𝑚N → (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q)
1110ad2antrl 477 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q)
12 simplrl 505 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → 𝑥Q)
13 lt2addnq 7113 . . . . . . . . . . . . 13 ((((*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q𝑥Q) ∧ ((*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q𝑥Q)) → (((*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥 ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝑥 +Q 𝑥)))
1411, 12, 11, 12, 13syl22anc 1185 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (((*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥 ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝑥 +Q 𝑥)))
157, 7, 14mp2and 427 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝑥 +Q 𝑥))
16 simplrr 506 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑥 +Q 𝑥) <Q 𝑦)
17 ltsonq 7107 . . . . . . . . . . . 12 <Q Or Q
18 ltrelnq 7074 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
1917, 18sotri 4870 . . . . . . . . . . 11 ((((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝑥 +Q 𝑥) ∧ (𝑥 +Q 𝑥) <Q 𝑦) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑦)
2015, 16, 19syl2anc 406 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑦)
21 simplrl 505 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → 𝑠Q)
2221ad3antrrr 479 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → 𝑠Q)
23 ltanqi 7111 . . . . . . . . . 10 ((((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑦𝑠Q) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q (𝑠 +Q 𝑦))
2420, 22, 23syl2anc 406 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q (𝑠 +Q 𝑦))
25 simprr 502 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → (𝑠 +Q 𝑦) = 𝑟)
2625ad2antrr 475 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q 𝑦) = 𝑟)
2724, 26breqtrd 3899 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q 𝑟)
28 addclnq 7084 . . . . . . . . . . 11 (((*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
2911, 11, 28syl2anc 406 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
30 addclnq 7084 . . . . . . . . . 10 ((𝑠Q ∧ ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∈ Q)
3122, 29, 30syl2anc 406 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∈ Q)
32 simplrr 506 . . . . . . . . . 10 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → 𝑟Q)
3332ad3antrrr 479 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → 𝑟Q)
34 caucvgpr.f . . . . . . . . . . . 12 (𝜑𝐹:NQ)
3534ad5antr 483 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → 𝐹:NQ)
36 simprl 501 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → 𝑚N)
3735, 36ffvelrnd 5488 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝐹𝑚) ∈ Q)
38 addclnq 7084 . . . . . . . . . 10 (((𝐹𝑚) ∈ Q ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q) → ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
3937, 11, 38syl2anc 406 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
40 sowlin 4180 . . . . . . . . . 10 (( <Q Or Q ∧ ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∈ Q𝑟Q ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟)))
4117, 40mpan 418 . . . . . . . . 9 (((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∈ Q𝑟Q ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟)))
4231, 33, 39, 41syl3anc 1184 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟)))
4327, 42mpd 13 . . . . . . 7 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟))
4422adantr 272 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → 𝑠Q)
45 simplrl 505 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → 𝑚N)
46 simpr 109 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )))
4711adantr 272 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q)
48 addassnqg 7091 . . . . . . . . . . . . . . 15 ((𝑠Q ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q) → ((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) = (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))))
4944, 47, 47, 48syl3anc 1184 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) = (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))))
5049breq1d 3885 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ↔ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))))
5146, 50mpbird 166 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )))
52 ltanqg 7109 . . . . . . . . . . . . . 14 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
5352adantl 273 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
54 addclnq 7084 . . . . . . . . . . . . . 14 ((𝑠Q ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
5544, 47, 54syl2anc 406 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∈ Q)
5637adantr 272 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (𝐹𝑚) ∈ Q)
57 addcomnqg 7090 . . . . . . . . . . . . . 14 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5857adantl 273 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5953, 55, 56, 47, 58caovord2d 5872 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝐹𝑚) ↔ ((𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))))
6051, 59mpbird 166 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝐹𝑚))
61 opeq1 3652 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ⟨𝑗, 1o⟩ = ⟨𝑚, 1o⟩)
6261eceq1d 6395 . . . . . . . . . . . . . . 15 (𝑗 = 𝑚 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑚, 1o⟩] ~Q )
6362fveq2d 5357 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑚, 1o⟩] ~Q ))
6463oveq2d 5722 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )))
65 fveq2 5353 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
6664, 65breq12d 3888 . . . . . . . . . . . 12 (𝑗 = 𝑚 → ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝐹𝑚)))
6766rspcev 2744 . . . . . . . . . . 11 ((𝑚N ∧ (𝑠 +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q (𝐹𝑚)) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
6845, 60, 67syl2anc 406 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
69 oveq1 5713 . . . . . . . . . . . . 13 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
7069breq1d 3885 . . . . . . . . . . . 12 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
7170rexbidv 2397 . . . . . . . . . . 11 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
72 caucvgpr.lim . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
7372fveq2i 5356 . . . . . . . . . . . 12 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
74 nqex 7072 . . . . . . . . . . . . . 14 Q ∈ V
7574rabex 4012 . . . . . . . . . . . . 13 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
7674rabex 4012 . . . . . . . . . . . . 13 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
7775, 76op1st 5975 . . . . . . . . . . . 12 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
7873, 77eqtri 2120 . . . . . . . . . . 11 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
7971, 78elrab2 2796 . . . . . . . . . 10 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
8044, 68, 79sylanbrc 411 . . . . . . . . 9 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ (𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) → 𝑠 ∈ (1st𝐿))
8180ex 114 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) → 𝑠 ∈ (1st𝐿)))
8233adantr 272 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟) → 𝑟Q)
8365, 63oveq12d 5724 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )))
8483breq1d 3885 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟 ↔ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟))
8584rspcev 2744 . . . . . . . . . . 11 ((𝑚N ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)
8636, 85sylan 279 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟)
87 breq2 3879 . . . . . . . . . . . 12 (𝑢 = 𝑟 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟))
8887rexbidv 2397 . . . . . . . . . . 11 (𝑢 = 𝑟 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟))
8972fveq2i 5356 . . . . . . . . . . . 12 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
9075, 76op2nd 5976 . . . . . . . . . . . 12 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
9189, 90eqtri 2120 . . . . . . . . . . 11 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
9288, 91elrab2 2796 . . . . . . . . . 10 (𝑟 ∈ (2nd𝐿) ↔ (𝑟Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑟))
9382, 86, 92sylanbrc 411 . . . . . . . . 9 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟) → 𝑟 ∈ (2nd𝐿))
9493ex 114 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟𝑟 ∈ (2nd𝐿)))
9581, 94orim12d 741 . . . . . . 7 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (((𝑠 +Q ((*Q‘[⟨𝑚, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) ∨ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1o⟩] ~Q )) <Q 𝑟) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
9643, 95mpd 13 . . . . . 6 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑚N ∧ (*Q‘[⟨𝑚, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
976, 96rexlimddv 2513 . . . . 5 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
984, 97rexlimddv 2513 . . . 4 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
992, 98rexlimddv 2513 . . 3 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
10099ex 114 . 2 ((𝜑 ∧ (𝑠Q𝑟Q)) → (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
101100ralrimivva 2473 1 (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 670  w3a 930   = wceq 1299  wcel 1448  wral 2375  wrex 2376  {crab 2379  cop 3477   class class class wbr 3875   Or wor 4155  wf 5055  cfv 5059  (class class class)co 5706  1st c1st 5967  2nd c2nd 5968  1oc1o 6236  [cec 6357  Ncnpi 6981   <N clti 6984   ~Q ceq 6988  Qcnq 6989   +Q cplq 6991  *Qcrq 6993   <Q cltq 6994
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062
This theorem is referenced by:  caucvgprlemcl  7385
  Copyright terms: Public domain W3C validator