ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemml GIF version

Theorem caucvgprprlemml 7754
Description: Lemma for caucvgprpr 7772. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemml (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟,𝑚   𝐴,𝑠,𝑟   𝐹,𝑙   𝑝,𝑙,𝑞,𝑟,𝑠   𝑢,𝑙   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑢,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝)   𝐿(𝑢,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemml
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . . . 6 (𝑚 = 1o → (𝐹𝑚) = (𝐹‘1o))
21breq2d 4041 . . . . 5 (𝑚 = 1o → (𝐴<P (𝐹𝑚) ↔ 𝐴<P (𝐹‘1o)))
3 caucvgprpr.bnd . . . . 5 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
4 1pi 7375 . . . . . 6 1oN
54a1i 9 . . . . 5 (𝜑 → 1oN)
62, 3, 5rspcdva 2869 . . . 4 (𝜑𝐴<P (𝐹‘1o))
7 ltrelpr 7565 . . . . . 6 <P ⊆ (P × P)
87brel 4711 . . . . 5 (𝐴<P (𝐹‘1o) → (𝐴P ∧ (𝐹‘1o) ∈ P))
98simpld 112 . . . 4 (𝐴<P (𝐹‘1o) → 𝐴P)
106, 9syl 14 . . 3 (𝜑𝐴P)
11 prop 7535 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 prml 7537 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
1311, 12syl 14 . . 3 (𝐴P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
1410, 13syl 14 . 2 (𝜑 → ∃𝑥Q 𝑥 ∈ (1st𝐴))
15 subhalfnqq 7474 . . . 4 (𝑥Q → ∃𝑠Q (𝑠 +Q 𝑠) <Q 𝑥)
1615ad2antrl 490 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → ∃𝑠Q (𝑠 +Q 𝑠) <Q 𝑥)
17 simplr 528 . . . . . 6 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → 𝑠Q)
18 archrecnq 7723 . . . . . . . 8 (𝑠Q → ∃𝑟N (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠)
1917, 18syl 14 . . . . . . 7 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → ∃𝑟N (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠)
20 simpr 110 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠)
21 simplr 528 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → 𝑟N)
22 nnnq 7482 . . . . . . . . . . . . . . . 16 (𝑟N → [⟨𝑟, 1o⟩] ~QQ)
23 recclnq 7452 . . . . . . . . . . . . . . . 16 ([⟨𝑟, 1o⟩] ~QQ → (*Q‘[⟨𝑟, 1o⟩] ~Q ) ∈ Q)
2421, 22, 233syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑟, 1o⟩] ~Q ) ∈ Q)
2517ad2antrr 488 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → 𝑠Q)
26 ltanqg 7460 . . . . . . . . . . . . . . 15 (((*Q‘[⟨𝑟, 1o⟩] ~Q ) ∈ Q𝑠Q𝑠Q) → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2724, 25, 25, 26syl3anc 1249 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2820, 27mpbid 147 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠))
29 simpllr 534 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) <Q 𝑥)
30 ltsonq 7458 . . . . . . . . . . . . . 14 <Q Or Q
31 ltrelnq 7425 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
3230, 31sotri 5061 . . . . . . . . . . . . 13 (((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑥)
3328, 29, 32syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑥)
3410ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → 𝐴P)
35 simprr 531 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → 𝑥 ∈ (1st𝐴))
3635ad4antr 494 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → 𝑥 ∈ (1st𝐴))
37 prcdnql 7544 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → ((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑥 → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴)))
3811, 37sylan 283 . . . . . . . . . . . . 13 ((𝐴P𝑥 ∈ (1st𝐴)) → ((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑥 → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴)))
3934, 36, 38syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑥 → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴)))
4033, 39mpd 13 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴))
41 addclnq 7435 . . . . . . . . . . . . 13 ((𝑠Q ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ Q)
4225, 24, 41syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ Q)
43 nqprl 7611 . . . . . . . . . . . 12 (((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ Q𝐴P) → ((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P 𝐴))
4442, 34, 43syl2anc 411 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P 𝐴))
4540, 44mpbid 147 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P 𝐴)
46 fveq2 5554 . . . . . . . . . . . 12 (𝑚 = 𝑟 → (𝐹𝑚) = (𝐹𝑟))
4746breq2d 4041 . . . . . . . . . . 11 (𝑚 = 𝑟 → (𝐴<P (𝐹𝑚) ↔ 𝐴<P (𝐹𝑟)))
483ad5antr 496 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ∀𝑚N 𝐴<P (𝐹𝑚))
4947, 48, 21rspcdva 2869 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → 𝐴<P (𝐹𝑟))
50 ltsopr 7656 . . . . . . . . . . 11 <P Or P
5150, 7sotri 5061 . . . . . . . . . 10 ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P 𝐴𝐴<P (𝐹𝑟)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
5245, 49, 51syl2anc 411 . . . . . . . . 9 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
5352ex 115 . . . . . . . 8 (((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠 → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
5453reximdva 2596 . . . . . . 7 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → (∃𝑟N (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠 → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
5519, 54mpd 13 . . . . . 6 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
56 oveq1 5925 . . . . . . . . . . . 12 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )))
5756breq2d 4041 . . . . . . . . . . 11 (𝑙 = 𝑠 → (𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))))
5857abbidv 2311 . . . . . . . . . 10 (𝑙 = 𝑠 → {𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))})
5956breq1d 4039 . . . . . . . . . . 11 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞))
6059abbidv 2311 . . . . . . . . . 10 (𝑙 = 𝑠 → {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞})
6158, 60opeq12d 3812 . . . . . . . . 9 (𝑙 = 𝑠 → ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩)
6261breq1d 4039 . . . . . . . 8 (𝑙 = 𝑠 → (⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
6362rexbidv 2495 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
64 caucvgprpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
6564fveq2i 5557 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
66 nqex 7423 . . . . . . . . . 10 Q ∈ V
6766rabex 4173 . . . . . . . . 9 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
6866rabex 4173 . . . . . . . . 9 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
6967, 68op1st 6199 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
7065, 69eqtri 2214 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
7163, 70elrab2 2919 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
7217, 55, 71sylanbrc 417 . . . . 5 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → 𝑠 ∈ (1st𝐿))
7372ex 115 . . . 4 (((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) → ((𝑠 +Q 𝑠) <Q 𝑥𝑠 ∈ (1st𝐿)))
7473reximdva 2596 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → (∃𝑠Q (𝑠 +Q 𝑠) <Q 𝑥 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
7516, 74mpd 13 . 2 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → ∃𝑠Q 𝑠 ∈ (1st𝐿))
7614, 75rexlimddv 2616 1 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {cab 2179  wral 2472  wrex 2473  {crab 2476  cop 3621   class class class wbr 4029  wf 5250  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192  1oc1o 6462  [cec 6585  Ncnpi 7332   <N clti 7335   ~Q ceq 7339  Qcnq 7340   +Q cplq 7342  *Qcrq 7344   <Q cltq 7345  Pcnp 7351   +P cpp 7353  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-inp 7526  df-iltp 7530
This theorem is referenced by:  caucvgprprlemm  7756
  Copyright terms: Public domain W3C validator