ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemml GIF version

Theorem caucvgprprlemml 7502
Description: Lemma for caucvgprpr 7520. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemml (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟,𝑚   𝐴,𝑠,𝑟   𝐹,𝑙   𝑝,𝑙,𝑞,𝑟,𝑠   𝑢,𝑙   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑢,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝)   𝐿(𝑢,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemml
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5421 . . . . . 6 (𝑚 = 1o → (𝐹𝑚) = (𝐹‘1o))
21breq2d 3941 . . . . 5 (𝑚 = 1o → (𝐴<P (𝐹𝑚) ↔ 𝐴<P (𝐹‘1o)))
3 caucvgprpr.bnd . . . . 5 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
4 1pi 7123 . . . . . 6 1oN
54a1i 9 . . . . 5 (𝜑 → 1oN)
62, 3, 5rspcdva 2794 . . . 4 (𝜑𝐴<P (𝐹‘1o))
7 ltrelpr 7313 . . . . . 6 <P ⊆ (P × P)
87brel 4591 . . . . 5 (𝐴<P (𝐹‘1o) → (𝐴P ∧ (𝐹‘1o) ∈ P))
98simpld 111 . . . 4 (𝐴<P (𝐹‘1o) → 𝐴P)
106, 9syl 14 . . 3 (𝜑𝐴P)
11 prop 7283 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 prml 7285 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
1311, 12syl 14 . . 3 (𝐴P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
1410, 13syl 14 . 2 (𝜑 → ∃𝑥Q 𝑥 ∈ (1st𝐴))
15 subhalfnqq 7222 . . . 4 (𝑥Q → ∃𝑠Q (𝑠 +Q 𝑠) <Q 𝑥)
1615ad2antrl 481 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → ∃𝑠Q (𝑠 +Q 𝑠) <Q 𝑥)
17 simplr 519 . . . . . 6 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → 𝑠Q)
18 archrecnq 7471 . . . . . . . 8 (𝑠Q → ∃𝑟N (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠)
1917, 18syl 14 . . . . . . 7 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → ∃𝑟N (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠)
20 simpr 109 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠)
21 simplr 519 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → 𝑟N)
22 nnnq 7230 . . . . . . . . . . . . . . . 16 (𝑟N → [⟨𝑟, 1o⟩] ~QQ)
23 recclnq 7200 . . . . . . . . . . . . . . . 16 ([⟨𝑟, 1o⟩] ~QQ → (*Q‘[⟨𝑟, 1o⟩] ~Q ) ∈ Q)
2421, 22, 233syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑟, 1o⟩] ~Q ) ∈ Q)
2517ad2antrr 479 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → 𝑠Q)
26 ltanqg 7208 . . . . . . . . . . . . . . 15 (((*Q‘[⟨𝑟, 1o⟩] ~Q ) ∈ Q𝑠Q𝑠Q) → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2724, 25, 25, 26syl3anc 1216 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2820, 27mpbid 146 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠))
29 simpllr 523 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) <Q 𝑥)
30 ltsonq 7206 . . . . . . . . . . . . . 14 <Q Or Q
31 ltrelnq 7173 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
3230, 31sotri 4934 . . . . . . . . . . . . 13 (((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑥)
3328, 29, 32syl2anc 408 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑥)
3410ad5antr 487 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → 𝐴P)
35 simprr 521 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → 𝑥 ∈ (1st𝐴))
3635ad4antr 485 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → 𝑥 ∈ (1st𝐴))
37 prcdnql 7292 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → ((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑥 → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴)))
3811, 37sylan 281 . . . . . . . . . . . . 13 ((𝐴P𝑥 ∈ (1st𝐴)) → ((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑥 → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴)))
3934, 36, 38syl2anc 408 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑥 → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴)))
4033, 39mpd 13 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴))
41 addclnq 7183 . . . . . . . . . . . . 13 ((𝑠Q ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ Q)
4225, 24, 41syl2anc 408 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ Q)
43 nqprl 7359 . . . . . . . . . . . 12 (((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ Q𝐴P) → ((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P 𝐴))
4442, 34, 43syl2anc 408 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ((𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ∈ (1st𝐴) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P 𝐴))
4540, 44mpbid 146 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P 𝐴)
46 fveq2 5421 . . . . . . . . . . . 12 (𝑚 = 𝑟 → (𝐹𝑚) = (𝐹𝑟))
4746breq2d 3941 . . . . . . . . . . 11 (𝑚 = 𝑟 → (𝐴<P (𝐹𝑚) ↔ 𝐴<P (𝐹𝑟)))
483ad5antr 487 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ∀𝑚N 𝐴<P (𝐹𝑚))
4947, 48, 21rspcdva 2794 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → 𝐴<P (𝐹𝑟))
50 ltsopr 7404 . . . . . . . . . . 11 <P Or P
5150, 7sotri 4934 . . . . . . . . . 10 ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P 𝐴𝐴<P (𝐹𝑟)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
5245, 49, 51syl2anc 408 . . . . . . . . 9 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
5352ex 114 . . . . . . . 8 (((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠 → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
5453reximdva 2534 . . . . . . 7 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → (∃𝑟N (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑠 → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
5519, 54mpd 13 . . . . . 6 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
56 oveq1 5781 . . . . . . . . . . . 12 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )))
5756breq2d 3941 . . . . . . . . . . 11 (𝑙 = 𝑠 → (𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))))
5857abbidv 2257 . . . . . . . . . 10 (𝑙 = 𝑠 → {𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))})
5956breq1d 3939 . . . . . . . . . . 11 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞))
6059abbidv 2257 . . . . . . . . . 10 (𝑙 = 𝑠 → {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞})
6158, 60opeq12d 3713 . . . . . . . . 9 (𝑙 = 𝑠 → ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩)
6261breq1d 3939 . . . . . . . 8 (𝑙 = 𝑠 → (⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
6362rexbidv 2438 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
64 caucvgprpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
6564fveq2i 5424 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
66 nqex 7171 . . . . . . . . . 10 Q ∈ V
6766rabex 4072 . . . . . . . . 9 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
6866rabex 4072 . . . . . . . . 9 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
6967, 68op1st 6044 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
7065, 69eqtri 2160 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
7163, 70elrab2 2843 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
7217, 55, 71sylanbrc 413 . . . . 5 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → 𝑠 ∈ (1st𝐿))
7372ex 114 . . . 4 (((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) → ((𝑠 +Q 𝑠) <Q 𝑥𝑠 ∈ (1st𝐿)))
7473reximdva 2534 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → (∃𝑠Q (𝑠 +Q 𝑠) <Q 𝑥 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
7516, 74mpd 13 . 2 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → ∃𝑠Q 𝑠 ∈ (1st𝐿))
7614, 75rexlimddv 2554 1 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  {cab 2125  wral 2416  wrex 2417  {crab 2420  cop 3530   class class class wbr 3929  wf 5119  cfv 5123  (class class class)co 5774  1st c1st 6036  2nd c2nd 6037  1oc1o 6306  [cec 6427  Ncnpi 7080   <N clti 7083   ~Q ceq 7087  Qcnq 7088   +Q cplq 7090  *Qcrq 7092   <Q cltq 7093  Pcnp 7099   +P cpp 7101  <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-inp 7274  df-iltp 7278
This theorem is referenced by:  caucvgprprlemm  7504
  Copyright terms: Public domain W3C validator