| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 5561 |
. . . . . 6
⊢ (𝑚 = 1o → (𝐹‘𝑚) = (𝐹‘1o)) |
| 2 | 1 | breq2d 4046 |
. . . . 5
⊢ (𝑚 = 1o → (𝐴<P
(𝐹‘𝑚) ↔ 𝐴<P (𝐹‘1o))) |
| 3 | | caucvgprpr.bnd |
. . . . 5
⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) |
| 4 | | 1pi 7399 |
. . . . . 6
⊢
1o ∈ N |
| 5 | 4 | a1i 9 |
. . . . 5
⊢ (𝜑 → 1o ∈
N) |
| 6 | 2, 3, 5 | rspcdva 2873 |
. . . 4
⊢ (𝜑 → 𝐴<P (𝐹‘1o)) |
| 7 | | ltrelpr 7589 |
. . . . . 6
⊢
<P ⊆ (P ×
P) |
| 8 | 7 | brel 4716 |
. . . . 5
⊢ (𝐴<P
(𝐹‘1o)
→ (𝐴 ∈
P ∧ (𝐹‘1o) ∈
P)) |
| 9 | 8 | simpld 112 |
. . . 4
⊢ (𝐴<P
(𝐹‘1o)
→ 𝐴 ∈
P) |
| 10 | 6, 9 | syl 14 |
. . 3
⊢ (𝜑 → 𝐴 ∈ P) |
| 11 | | prop 7559 |
. . . 4
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
| 12 | | prml 7561 |
. . . 4
⊢
(〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P →
∃𝑥 ∈
Q 𝑥 ∈
(1st ‘𝐴)) |
| 13 | 11, 12 | syl 14 |
. . 3
⊢ (𝐴 ∈ P →
∃𝑥 ∈
Q 𝑥 ∈
(1st ‘𝐴)) |
| 14 | 10, 13 | syl 14 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) |
| 15 | | subhalfnqq 7498 |
. . . 4
⊢ (𝑥 ∈ Q →
∃𝑠 ∈
Q (𝑠
+Q 𝑠) <Q 𝑥) |
| 16 | 15 | ad2antrl 490 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) →
∃𝑠 ∈
Q (𝑠
+Q 𝑠) <Q 𝑥) |
| 17 | | simplr 528 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) → 𝑠 ∈ Q) |
| 18 | | archrecnq 7747 |
. . . . . . . 8
⊢ (𝑠 ∈ Q →
∃𝑟 ∈
N (*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) |
| 19 | 17, 18 | syl 14 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) → ∃𝑟 ∈ N
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) |
| 20 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) →
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) |
| 21 | | simplr 528 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 𝑟 ∈ N) |
| 22 | | nnnq 7506 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ N →
[〈𝑟,
1o〉] ~Q ∈
Q) |
| 23 | | recclnq 7476 |
. . . . . . . . . . . . . . . 16
⊢
([〈𝑟,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑟, 1o〉]
~Q ) ∈ Q) |
| 24 | 21, 22, 23 | 3syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) →
(*Q‘[〈𝑟, 1o〉]
~Q ) ∈ Q) |
| 25 | 17 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 𝑠 ∈ Q) |
| 26 | | ltanqg 7484 |
. . . . . . . . . . . . . . 15
⊢
(((*Q‘[〈𝑟, 1o〉]
~Q ) ∈ Q ∧ 𝑠 ∈ Q ∧ 𝑠 ∈ Q) →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠 ↔ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q (𝑠 +Q
𝑠))) |
| 27 | 24, 25, 25, 26 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠 ↔ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q (𝑠 +Q
𝑠))) |
| 28 | 20, 27 | mpbid 147 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q (𝑠 +Q
𝑠)) |
| 29 | | simpllr 534 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) <Q
𝑥) |
| 30 | | ltsonq 7482 |
. . . . . . . . . . . . . 14
⊢
<Q Or Q |
| 31 | | ltrelnq 7449 |
. . . . . . . . . . . . . 14
⊢
<Q ⊆ (Q ×
Q) |
| 32 | 30, 31 | sotri 5066 |
. . . . . . . . . . . . 13
⊢ (((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q (𝑠 +Q
𝑠) ∧ (𝑠 +Q
𝑠)
<Q 𝑥) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑥) |
| 33 | 28, 29, 32 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑥) |
| 34 | 10 | ad5antr 496 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 𝐴 ∈ P) |
| 35 | | simprr 531 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) → 𝑥 ∈ (1st
‘𝐴)) |
| 36 | 35 | ad4antr 494 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 𝑥 ∈ (1st ‘𝐴)) |
| 37 | | prcdnql 7568 |
. . . . . . . . . . . . . 14
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑥 ∈ (1st
‘𝐴)) → ((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑥 → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴))) |
| 38 | 11, 37 | sylan 283 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝑥 ∈ (1st
‘𝐴)) → ((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑥 → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴))) |
| 39 | 34, 36, 38 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → ((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑥 → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴))) |
| 40 | 33, 39 | mpd 13 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴)) |
| 41 | | addclnq 7459 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) ∈ Q) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ Q) |
| 42 | 25, 24, 41 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ Q) |
| 43 | | nqprl 7635 |
. . . . . . . . . . . 12
⊢ (((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ Q ∧ 𝐴 ∈ P) → ((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P 𝐴)) |
| 44 | 42, 34, 43 | syl2anc 411 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → ((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P 𝐴)) |
| 45 | 40, 44 | mpbid 147 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P 𝐴) |
| 46 | | fveq2 5561 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑟 → (𝐹‘𝑚) = (𝐹‘𝑟)) |
| 47 | 46 | breq2d 4046 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑟 → (𝐴<P (𝐹‘𝑚) ↔ 𝐴<P (𝐹‘𝑟))) |
| 48 | 3 | ad5antr 496 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) |
| 49 | 47, 48, 21 | rspcdva 2873 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 𝐴<P (𝐹‘𝑟)) |
| 50 | | ltsopr 7680 |
. . . . . . . . . . 11
⊢
<P Or P |
| 51 | 50, 7 | sotri 5066 |
. . . . . . . . . 10
⊢
((〈{𝑝 ∣
𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P 𝐴 ∧ 𝐴<P (𝐹‘𝑟)) → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) |
| 52 | 45, 49, 51 | syl2anc 411 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) |
| 53 | 52 | ex 115 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠 → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) |
| 54 | 53 | reximdva 2599 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) → (∃𝑟 ∈ N
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠 → ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) |
| 55 | 19, 54 | mpd 13 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) → ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) |
| 56 | | oveq1 5932 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))) |
| 57 | 56 | breq2d 4046 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑠 → (𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )))) |
| 58 | 57 | abbidv 2314 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑠 → {𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}) |
| 59 | 56 | breq1d 4044 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞)) |
| 60 | 59 | abbidv 2314 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑠 → {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}) |
| 61 | 58, 60 | opeq12d 3817 |
. . . . . . . . 9
⊢ (𝑙 = 𝑠 → 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉) |
| 62 | 61 | breq1d 4044 |
. . . . . . . 8
⊢ (𝑙 = 𝑠 → (〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) |
| 63 | 62 | rexbidv 2498 |
. . . . . . 7
⊢ (𝑙 = 𝑠 → (∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) |
| 64 | | caucvgprpr.lim |
. . . . . . . . 9
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
| 65 | 64 | fveq2i 5564 |
. . . . . . . 8
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) |
| 66 | | nqex 7447 |
. . . . . . . . . 10
⊢
Q ∈ V |
| 67 | 66 | rabex 4178 |
. . . . . . . . 9
⊢ {𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} ∈ V |
| 68 | 66 | rabex 4178 |
. . . . . . . . 9
⊢ {𝑢 ∈ Q ∣
∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉} ∈
V |
| 69 | 67, 68 | op1st 6213 |
. . . . . . . 8
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) = {𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} |
| 70 | 65, 69 | eqtri 2217 |
. . . . . . 7
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} |
| 71 | 63, 70 | elrab2 2923 |
. . . . . 6
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) |
| 72 | 17, 55, 71 | sylanbrc 417 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) → 𝑠 ∈ (1st ‘𝐿)) |
| 73 | 72 | ex 115 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) →
((𝑠
+Q 𝑠) <Q 𝑥 → 𝑠 ∈ (1st ‘𝐿))) |
| 74 | 73 | reximdva 2599 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) →
(∃𝑠 ∈
Q (𝑠
+Q 𝑠) <Q 𝑥 → ∃𝑠 ∈ Q 𝑠 ∈ (1st
‘𝐿))) |
| 75 | 16, 74 | mpd 13 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) →
∃𝑠 ∈
Q 𝑠 ∈
(1st ‘𝐿)) |
| 76 | 14, 75 | rexlimddv 2619 |
1
⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿)) |