| Step | Hyp | Ref
 | Expression | 
| 1 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑚 = 1o → (𝐹‘𝑚) = (𝐹‘1o)) | 
| 2 | 1 | breq2d 4045 | 
. . . . 5
⊢ (𝑚 = 1o → (𝐴<P
(𝐹‘𝑚) ↔ 𝐴<P (𝐹‘1o))) | 
| 3 |   | caucvgprpr.bnd | 
. . . . 5
⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) | 
| 4 |   | 1pi 7382 | 
. . . . . 6
⊢
1o ∈ N | 
| 5 | 4 | a1i 9 | 
. . . . 5
⊢ (𝜑 → 1o ∈
N) | 
| 6 | 2, 3, 5 | rspcdva 2873 | 
. . . 4
⊢ (𝜑 → 𝐴<P (𝐹‘1o)) | 
| 7 |   | ltrelpr 7572 | 
. . . . . 6
⊢
<P ⊆ (P ×
P) | 
| 8 | 7 | brel 4715 | 
. . . . 5
⊢ (𝐴<P
(𝐹‘1o)
→ (𝐴 ∈
P ∧ (𝐹‘1o) ∈
P)) | 
| 9 | 8 | simpld 112 | 
. . . 4
⊢ (𝐴<P
(𝐹‘1o)
→ 𝐴 ∈
P) | 
| 10 | 6, 9 | syl 14 | 
. . 3
⊢ (𝜑 → 𝐴 ∈ P) | 
| 11 |   | prop 7542 | 
. . . 4
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 12 |   | prml 7544 | 
. . . 4
⊢
(〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P →
∃𝑥 ∈
Q 𝑥 ∈
(1st ‘𝐴)) | 
| 13 | 11, 12 | syl 14 | 
. . 3
⊢ (𝐴 ∈ P →
∃𝑥 ∈
Q 𝑥 ∈
(1st ‘𝐴)) | 
| 14 | 10, 13 | syl 14 | 
. 2
⊢ (𝜑 → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) | 
| 15 |   | subhalfnqq 7481 | 
. . . 4
⊢ (𝑥 ∈ Q →
∃𝑠 ∈
Q (𝑠
+Q 𝑠) <Q 𝑥) | 
| 16 | 15 | ad2antrl 490 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) →
∃𝑠 ∈
Q (𝑠
+Q 𝑠) <Q 𝑥) | 
| 17 |   | simplr 528 | 
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) → 𝑠 ∈ Q) | 
| 18 |   | archrecnq 7730 | 
. . . . . . . 8
⊢ (𝑠 ∈ Q →
∃𝑟 ∈
N (*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) | 
| 19 | 17, 18 | syl 14 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) → ∃𝑟 ∈ N
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) | 
| 20 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) →
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) | 
| 21 |   | simplr 528 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 𝑟 ∈ N) | 
| 22 |   | nnnq 7489 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ N →
[〈𝑟,
1o〉] ~Q ∈
Q) | 
| 23 |   | recclnq 7459 | 
. . . . . . . . . . . . . . . 16
⊢
([〈𝑟,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑟, 1o〉]
~Q ) ∈ Q) | 
| 24 | 21, 22, 23 | 3syl 17 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) →
(*Q‘[〈𝑟, 1o〉]
~Q ) ∈ Q) | 
| 25 | 17 | ad2antrr 488 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 𝑠 ∈ Q) | 
| 26 |   | ltanqg 7467 | 
. . . . . . . . . . . . . . 15
⊢
(((*Q‘[〈𝑟, 1o〉]
~Q ) ∈ Q ∧ 𝑠 ∈ Q ∧ 𝑠 ∈ Q) →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠 ↔ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q (𝑠 +Q
𝑠))) | 
| 27 | 24, 25, 25, 26 | syl3anc 1249 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠 ↔ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q (𝑠 +Q
𝑠))) | 
| 28 | 20, 27 | mpbid 147 | 
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q (𝑠 +Q
𝑠)) | 
| 29 |   | simpllr 534 | 
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) <Q
𝑥) | 
| 30 |   | ltsonq 7465 | 
. . . . . . . . . . . . . 14
⊢ 
<Q Or Q | 
| 31 |   | ltrelnq 7432 | 
. . . . . . . . . . . . . 14
⊢ 
<Q ⊆ (Q ×
Q) | 
| 32 | 30, 31 | sotri 5065 | 
. . . . . . . . . . . . 13
⊢ (((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q (𝑠 +Q
𝑠) ∧ (𝑠 +Q
𝑠)
<Q 𝑥) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑥) | 
| 33 | 28, 29, 32 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑥) | 
| 34 | 10 | ad5antr 496 | 
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 𝐴 ∈ P) | 
| 35 |   | simprr 531 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) → 𝑥 ∈ (1st
‘𝐴)) | 
| 36 | 35 | ad4antr 494 | 
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 𝑥 ∈ (1st ‘𝐴)) | 
| 37 |   | prcdnql 7551 | 
. . . . . . . . . . . . . 14
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑥 ∈ (1st
‘𝐴)) → ((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑥 → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴))) | 
| 38 | 11, 37 | sylan 283 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝑥 ∈ (1st
‘𝐴)) → ((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑥 → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴))) | 
| 39 | 34, 36, 38 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → ((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑥 → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴))) | 
| 40 | 33, 39 | mpd 13 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴)) | 
| 41 |   | addclnq 7442 | 
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) ∈ Q) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ Q) | 
| 42 | 25, 24, 41 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ Q) | 
| 43 |   | nqprl 7618 | 
. . . . . . . . . . . 12
⊢ (((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ Q ∧ 𝐴 ∈ P) → ((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P 𝐴)) | 
| 44 | 42, 34, 43 | syl2anc 411 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → ((𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ∈ (1st ‘𝐴) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P 𝐴)) | 
| 45 | 40, 44 | mpbid 147 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P 𝐴) | 
| 46 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑟 → (𝐹‘𝑚) = (𝐹‘𝑟)) | 
| 47 | 46 | breq2d 4045 | 
. . . . . . . . . . 11
⊢ (𝑚 = 𝑟 → (𝐴<P (𝐹‘𝑚) ↔ 𝐴<P (𝐹‘𝑟))) | 
| 48 | 3 | ad5antr 496 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) | 
| 49 | 47, 48, 21 | rspcdva 2873 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 𝐴<P (𝐹‘𝑟)) | 
| 50 |   | ltsopr 7663 | 
. . . . . . . . . . 11
⊢
<P Or P | 
| 51 | 50, 7 | sotri 5065 | 
. . . . . . . . . 10
⊢
((〈{𝑝 ∣
𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P 𝐴 ∧ 𝐴<P (𝐹‘𝑟)) → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) | 
| 52 | 45, 49, 51 | syl2anc 411 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) ∧
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠) → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) | 
| 53 | 52 | ex 115 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) ∧ 𝑟 ∈ N) →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠 → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) | 
| 54 | 53 | reximdva 2599 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) → (∃𝑟 ∈ N
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑠 → ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) | 
| 55 | 19, 54 | mpd 13 | 
. . . . . 6
⊢ ((((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) → ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) | 
| 56 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))) | 
| 57 | 56 | breq2d 4045 | 
. . . . . . . . . . 11
⊢ (𝑙 = 𝑠 → (𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )))) | 
| 58 | 57 | abbidv 2314 | 
. . . . . . . . . 10
⊢ (𝑙 = 𝑠 → {𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}) | 
| 59 | 56 | breq1d 4043 | 
. . . . . . . . . . 11
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞)) | 
| 60 | 59 | abbidv 2314 | 
. . . . . . . . . 10
⊢ (𝑙 = 𝑠 → {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}) | 
| 61 | 58, 60 | opeq12d 3816 | 
. . . . . . . . 9
⊢ (𝑙 = 𝑠 → 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉) | 
| 62 | 61 | breq1d 4043 | 
. . . . . . . 8
⊢ (𝑙 = 𝑠 → (〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) | 
| 63 | 62 | rexbidv 2498 | 
. . . . . . 7
⊢ (𝑙 = 𝑠 → (∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) | 
| 64 |   | caucvgprpr.lim | 
. . . . . . . . 9
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 | 
| 65 | 64 | fveq2i 5561 | 
. . . . . . . 8
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) | 
| 66 |   | nqex 7430 | 
. . . . . . . . . 10
⊢
Q ∈ V | 
| 67 | 66 | rabex 4177 | 
. . . . . . . . 9
⊢ {𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} ∈ V | 
| 68 | 66 | rabex 4177 | 
. . . . . . . . 9
⊢ {𝑢 ∈ Q ∣
∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉} ∈
V | 
| 69 | 67, 68 | op1st 6204 | 
. . . . . . . 8
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) = {𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} | 
| 70 | 65, 69 | eqtri 2217 | 
. . . . . . 7
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} | 
| 71 | 63, 70 | elrab2 2923 | 
. . . . . 6
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) | 
| 72 | 17, 55, 71 | sylanbrc 417 | 
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) <Q 𝑥) → 𝑠 ∈ (1st ‘𝐿)) | 
| 73 | 72 | ex 115 | 
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) ∧ 𝑠 ∈ Q) →
((𝑠
+Q 𝑠) <Q 𝑥 → 𝑠 ∈ (1st ‘𝐿))) | 
| 74 | 73 | reximdva 2599 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) →
(∃𝑠 ∈
Q (𝑠
+Q 𝑠) <Q 𝑥 → ∃𝑠 ∈ Q 𝑠 ∈ (1st
‘𝐿))) | 
| 75 | 16, 74 | mpd 13 | 
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st
‘𝐴))) →
∃𝑠 ∈
Q 𝑠 ∈
(1st ‘𝐿)) | 
| 76 | 14, 75 | rexlimddv 2619 | 
1
⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿)) |