ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplociccreex GIF version

Theorem suplociccreex 14373
Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8043 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
Hypotheses
Ref Expression
suplocicc.1 (𝜑𝐵 ∈ ℝ)
suplocicc.2 (𝜑𝐶 ∈ ℝ)
suplocicc.bc (𝜑𝐵 < 𝐶)
suplocicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
suplocicc.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocicc.l (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
Assertion
Ref Expression
suplociccreex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem suplociccreex
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocicc.3 . . 3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
2 suplocicc.1 . . . 4 (𝜑𝐵 ∈ ℝ)
3 suplocicc.2 . . . 4 (𝜑𝐶 ∈ ℝ)
4 iccssre 9968 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
52, 3, 4syl2anc 411 . . 3 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
61, 5sstrd 3177 . 2 (𝜑𝐴 ⊆ ℝ)
7 suplocicc.m . 2 (𝜑 → ∃𝑥 𝑥𝐴)
8 peano2re 8106 . . . 4 (𝐶 ∈ ℝ → (𝐶 + 1) ∈ ℝ)
93, 8syl 14 . . 3 (𝜑 → (𝐶 + 1) ∈ ℝ)
106sselda 3167 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ)
113adantr 276 . . . . 5 ((𝜑𝑦𝐴) → 𝐶 ∈ ℝ)
129adantr 276 . . . . 5 ((𝜑𝑦𝐴) → (𝐶 + 1) ∈ ℝ)
132rexrd 8020 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
1413adantr 276 . . . . . 6 ((𝜑𝑦𝐴) → 𝐵 ∈ ℝ*)
153rexrd 8020 . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
1615adantr 276 . . . . . 6 ((𝜑𝑦𝐴) → 𝐶 ∈ ℝ*)
171sselda 3167 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 ∈ (𝐵[,]𝐶))
18 iccleub 9944 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑦 ∈ (𝐵[,]𝐶)) → 𝑦𝐶)
1914, 16, 17, 18syl3anc 1248 . . . . 5 ((𝜑𝑦𝐴) → 𝑦𝐶)
2011ltp1d 8900 . . . . 5 ((𝜑𝑦𝐴) → 𝐶 < (𝐶 + 1))
2110, 11, 12, 19, 20lelttrd 8095 . . . 4 ((𝜑𝑦𝐴) → 𝑦 < (𝐶 + 1))
2221ralrimiva 2560 . . 3 (𝜑 → ∀𝑦𝐴 𝑦 < (𝐶 + 1))
23 brralrspcev 4073 . . 3 (((𝐶 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝐶 + 1)) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
249, 22, 23syl2anc 411 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
257ad5antr 496 . . . . . . . . . 10 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) → ∃𝑥 𝑥𝐴)
26 simpr 110 . . . . . . . . . . . 12 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝑥𝐴)
27 simp-4r 542 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) → 𝑢 ∈ ℝ)
2827ad2antrr 488 . . . . . . . . . . . . 13 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝑢 ∈ ℝ)
292ad4antr 494 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) → 𝐵 ∈ ℝ)
3029ad2antrr 488 . . . . . . . . . . . . 13 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
316ad6antr 498 . . . . . . . . . . . . . 14 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝐴 ⊆ ℝ)
3231, 26sseldd 3168 . . . . . . . . . . . . 13 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
33 simplr 528 . . . . . . . . . . . . 13 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝑢 < 𝐵)
3413ad6antr 498 . . . . . . . . . . . . . 14 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
3515ad6antr 498 . . . . . . . . . . . . . 14 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝐶 ∈ ℝ*)
361ad6antr 498 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝐴 ⊆ (𝐵[,]𝐶))
3736, 26sseldd 3168 . . . . . . . . . . . . . 14 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝑥 ∈ (𝐵[,]𝐶))
38 iccgelb 9945 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
3934, 35, 37, 38syl3anc 1248 . . . . . . . . . . . . 13 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝐵𝑥)
4028, 30, 32, 33, 39ltletrd 8393 . . . . . . . . . . . 12 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → 𝑢 < 𝑥)
41 breq2 4019 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑢 < 𝑧𝑢 < 𝑥))
4241rspcev 2853 . . . . . . . . . . . 12 ((𝑥𝐴𝑢 < 𝑥) → ∃𝑧𝐴 𝑢 < 𝑧)
4326, 40, 42syl2anc 411 . . . . . . . . . . 11 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → ∃𝑧𝐴 𝑢 < 𝑧)
4443orcd 734 . . . . . . . . . 10 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) ∧ 𝑥𝐴) → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣))
4525, 44exlimddv 1908 . . . . . . . . 9 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝑢 < 𝐵) → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣))
46 simpllr 534 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝑢 < 𝑣)
47 simplr 528 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝑢 < 𝐶)
48 simp-5r 544 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝑢 ∈ ℝ)
49 simp-4r 542 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝑣 ∈ ℝ)
503ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝐶 ∈ ℝ)
51 ltmininf 11256 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑢 < inf({𝑣, 𝐶}, ℝ, < ) ↔ (𝑢 < 𝑣𝑢 < 𝐶)))
5248, 49, 50, 51syl3anc 1248 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → (𝑢 < inf({𝑣, 𝐶}, ℝ, < ) ↔ (𝑢 < 𝑣𝑢 < 𝐶)))
5346, 47, 52mpbir2and 945 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝑢 < inf({𝑣, 𝐶}, ℝ, < ))
54 simpr 110 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝐵 < 𝑣)
55 suplocicc.bc . . . . . . . . . . . . . 14 (𝜑𝐵 < 𝐶)
5655ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝐵 < 𝐶)
572ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝐵 ∈ ℝ)
58 ltmininf 11256 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < inf({𝑣, 𝐶}, ℝ, < ) ↔ (𝐵 < 𝑣𝐵 < 𝐶)))
5957, 49, 50, 58syl3anc 1248 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → (𝐵 < inf({𝑣, 𝐶}, ℝ, < ) ↔ (𝐵 < 𝑣𝐵 < 𝐶)))
6054, 56, 59mpbir2and 945 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝐵 < inf({𝑣, 𝐶}, ℝ, < ))
61 mincl 11252 . . . . . . . . . . . . . 14 ((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝑣, 𝐶}, ℝ, < ) ∈ ℝ)
6249, 50, 61syl2anc 411 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → inf({𝑣, 𝐶}, ℝ, < ) ∈ ℝ)
63 maxltsup 11240 . . . . . . . . . . . . 13 ((𝑢 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ inf({𝑣, 𝐶}, ℝ, < ) ∈ ℝ) → (sup({𝑢, 𝐵}, ℝ, < ) < inf({𝑣, 𝐶}, ℝ, < ) ↔ (𝑢 < inf({𝑣, 𝐶}, ℝ, < ) ∧ 𝐵 < inf({𝑣, 𝐶}, ℝ, < ))))
6448, 57, 62, 63syl3anc 1248 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → (sup({𝑢, 𝐵}, ℝ, < ) < inf({𝑣, 𝐶}, ℝ, < ) ↔ (𝑢 < inf({𝑣, 𝐶}, ℝ, < ) ∧ 𝐵 < inf({𝑣, 𝐶}, ℝ, < ))))
6553, 60, 64mpbir2and 945 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → sup({𝑢, 𝐵}, ℝ, < ) < inf({𝑣, 𝐶}, ℝ, < ))
66 breq2 4019 . . . . . . . . . . . . 13 (𝑦 = inf({𝑣, 𝐶}, ℝ, < ) → (sup({𝑢, 𝐵}, ℝ, < ) < 𝑦 ↔ sup({𝑢, 𝐵}, ℝ, < ) < inf({𝑣, 𝐶}, ℝ, < )))
67 breq2 4019 . . . . . . . . . . . . . . 15 (𝑦 = inf({𝑣, 𝐶}, ℝ, < ) → (𝑧 < 𝑦𝑧 < inf({𝑣, 𝐶}, ℝ, < )))
6867ralbidv 2487 . . . . . . . . . . . . . 14 (𝑦 = inf({𝑣, 𝐶}, ℝ, < ) → (∀𝑧𝐴 𝑧 < 𝑦 ↔ ∀𝑧𝐴 𝑧 < inf({𝑣, 𝐶}, ℝ, < )))
6968orbi2d 791 . . . . . . . . . . . . 13 (𝑦 = inf({𝑣, 𝐶}, ℝ, < ) → ((∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦) ↔ (∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 ∨ ∀𝑧𝐴 𝑧 < inf({𝑣, 𝐶}, ℝ, < ))))
7066, 69imbi12d 234 . . . . . . . . . . . 12 (𝑦 = inf({𝑣, 𝐶}, ℝ, < ) → ((sup({𝑢, 𝐵}, ℝ, < ) < 𝑦 → (∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)) ↔ (sup({𝑢, 𝐵}, ℝ, < ) < inf({𝑣, 𝐶}, ℝ, < ) → (∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 ∨ ∀𝑧𝐴 𝑧 < inf({𝑣, 𝐶}, ℝ, < )))))
71 breq1 4018 . . . . . . . . . . . . . . 15 (𝑥 = sup({𝑢, 𝐵}, ℝ, < ) → (𝑥 < 𝑦 ↔ sup({𝑢, 𝐵}, ℝ, < ) < 𝑦))
72 breq1 4018 . . . . . . . . . . . . . . . . 17 (𝑥 = sup({𝑢, 𝐵}, ℝ, < ) → (𝑥 < 𝑧 ↔ sup({𝑢, 𝐵}, ℝ, < ) < 𝑧))
7372rexbidv 2488 . . . . . . . . . . . . . . . 16 (𝑥 = sup({𝑢, 𝐵}, ℝ, < ) → (∃𝑧𝐴 𝑥 < 𝑧 ↔ ∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧))
7473orbi1d 792 . . . . . . . . . . . . . . 15 (𝑥 = sup({𝑢, 𝐵}, ℝ, < ) → ((∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦) ↔ (∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
7571, 74imbi12d 234 . . . . . . . . . . . . . 14 (𝑥 = sup({𝑢, 𝐵}, ℝ, < ) → ((𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)) ↔ (sup({𝑢, 𝐵}, ℝ, < ) < 𝑦 → (∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))))
7675ralbidv 2487 . . . . . . . . . . . . 13 (𝑥 = sup({𝑢, 𝐵}, ℝ, < ) → (∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)) ↔ ∀𝑦 ∈ (𝐵[,]𝐶)(sup({𝑢, 𝐵}, ℝ, < ) < 𝑦 → (∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))))
77 suplocicc.l . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
7877ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
79 maxcl 11232 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝑢, 𝐵}, ℝ, < ) ∈ ℝ)
8048, 57, 79syl2anc 411 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → sup({𝑢, 𝐵}, ℝ, < ) ∈ ℝ)
81 maxle2 11234 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝑢, 𝐵}, ℝ, < ))
8248, 57, 81syl2anc 411 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝐵 ≤ sup({𝑢, 𝐵}, ℝ, < ))
83 maxltsup 11240 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝑢, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝑢 < 𝐶𝐵 < 𝐶)))
8448, 57, 50, 83syl3anc 1248 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → (sup({𝑢, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝑢 < 𝐶𝐵 < 𝐶)))
8547, 56, 84mpbir2and 945 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → sup({𝑢, 𝐵}, ℝ, < ) < 𝐶)
8680, 50, 85ltled 8089 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → sup({𝑢, 𝐵}, ℝ, < ) ≤ 𝐶)
87 elicc2 9951 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝑢, 𝐵}, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup({𝑢, 𝐵}, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup({𝑢, 𝐵}, ℝ, < ) ∧ sup({𝑢, 𝐵}, ℝ, < ) ≤ 𝐶)))
8857, 50, 87syl2anc 411 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → (sup({𝑢, 𝐵}, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup({𝑢, 𝐵}, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup({𝑢, 𝐵}, ℝ, < ) ∧ sup({𝑢, 𝐵}, ℝ, < ) ≤ 𝐶)))
8980, 82, 86, 88mpbir3and 1181 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → sup({𝑢, 𝐵}, ℝ, < ) ∈ (𝐵[,]𝐶))
9076, 78, 89rspcdva 2858 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → ∀𝑦 ∈ (𝐵[,]𝐶)(sup({𝑢, 𝐵}, ℝ, < ) < 𝑦 → (∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
9157, 62, 60ltled 8089 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → 𝐵 ≤ inf({𝑣, 𝐶}, ℝ, < ))
92 min2inf 11254 . . . . . . . . . . . . . 14 ((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝑣, 𝐶}, ℝ, < ) ≤ 𝐶)
9349, 50, 92syl2anc 411 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → inf({𝑣, 𝐶}, ℝ, < ) ≤ 𝐶)
94 elicc2 9951 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (inf({𝑣, 𝐶}, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (inf({𝑣, 𝐶}, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ inf({𝑣, 𝐶}, ℝ, < ) ∧ inf({𝑣, 𝐶}, ℝ, < ) ≤ 𝐶)))
9557, 50, 94syl2anc 411 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → (inf({𝑣, 𝐶}, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (inf({𝑣, 𝐶}, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ inf({𝑣, 𝐶}, ℝ, < ) ∧ inf({𝑣, 𝐶}, ℝ, < ) ≤ 𝐶)))
9662, 91, 93, 95mpbir3and 1181 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → inf({𝑣, 𝐶}, ℝ, < ) ∈ (𝐵[,]𝐶))
9770, 90, 96rspcdva 2858 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → (sup({𝑢, 𝐵}, ℝ, < ) < inf({𝑣, 𝐶}, ℝ, < ) → (∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 ∨ ∀𝑧𝐴 𝑧 < inf({𝑣, 𝐶}, ℝ, < ))))
9865, 97mpd 13 . . . . . . . . . 10 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → (∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 ∨ ∀𝑧𝐴 𝑧 < inf({𝑣, 𝐶}, ℝ, < )))
9948ad2antrr 488 . . . . . . . . . . . . . 14 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ sup({𝑢, 𝐵}, ℝ, < ) < 𝑧) → 𝑢 ∈ ℝ)
100 simplr 528 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → 𝑢 ∈ ℝ)
1012ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → 𝐵 ∈ ℝ)
102100, 101, 79syl2anc 411 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → sup({𝑢, 𝐵}, ℝ, < ) ∈ ℝ)
103102ad5antr 496 . . . . . . . . . . . . . 14 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ sup({𝑢, 𝐵}, ℝ, < ) < 𝑧) → sup({𝑢, 𝐵}, ℝ, < ) ∈ ℝ)
1046ad6antr 498 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) → 𝐴 ⊆ ℝ)
105 simpr 110 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) → 𝑧𝐴)
106104, 105sseldd 3168 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
107106adantr 276 . . . . . . . . . . . . . 14 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ sup({𝑢, 𝐵}, ℝ, < ) < 𝑧) → 𝑧 ∈ ℝ)
10857ad2antrr 488 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ sup({𝑢, 𝐵}, ℝ, < ) < 𝑧) → 𝐵 ∈ ℝ)
109 maxle1 11233 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑢 ≤ sup({𝑢, 𝐵}, ℝ, < ))
11099, 108, 109syl2anc 411 . . . . . . . . . . . . . 14 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ sup({𝑢, 𝐵}, ℝ, < ) < 𝑧) → 𝑢 ≤ sup({𝑢, 𝐵}, ℝ, < ))
111 simpr 110 . . . . . . . . . . . . . 14 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ sup({𝑢, 𝐵}, ℝ, < ) < 𝑧) → sup({𝑢, 𝐵}, ℝ, < ) < 𝑧)
11299, 103, 107, 110, 111lelttrd 8095 . . . . . . . . . . . . 13 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ sup({𝑢, 𝐵}, ℝ, < ) < 𝑧) → 𝑢 < 𝑧)
113112ex 115 . . . . . . . . . . . 12 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) → (sup({𝑢, 𝐵}, ℝ, < ) < 𝑧𝑢 < 𝑧))
114113reximdva 2589 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → (∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 → ∃𝑧𝐴 𝑢 < 𝑧))
115106adantr 276 . . . . . . . . . . . . . 14 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ 𝑧 < inf({𝑣, 𝐶}, ℝ, < )) → 𝑧 ∈ ℝ)
11662ad2antrr 488 . . . . . . . . . . . . . 14 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ 𝑧 < inf({𝑣, 𝐶}, ℝ, < )) → inf({𝑣, 𝐶}, ℝ, < ) ∈ ℝ)
11749ad2antrr 488 . . . . . . . . . . . . . 14 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ 𝑧 < inf({𝑣, 𝐶}, ℝ, < )) → 𝑣 ∈ ℝ)
118 simpr 110 . . . . . . . . . . . . . 14 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ 𝑧 < inf({𝑣, 𝐶}, ℝ, < )) → 𝑧 < inf({𝑣, 𝐶}, ℝ, < ))
119 simpr 110 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → 𝑣 ∈ ℝ)
1203ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → 𝐶 ∈ ℝ)
121 min1inf 11253 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝑣, 𝐶}, ℝ, < ) ≤ 𝑣)
122119, 120, 121syl2anc 411 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → inf({𝑣, 𝐶}, ℝ, < ) ≤ 𝑣)
123122ad5antr 496 . . . . . . . . . . . . . 14 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ 𝑧 < inf({𝑣, 𝐶}, ℝ, < )) → inf({𝑣, 𝐶}, ℝ, < ) ≤ 𝑣)
124115, 116, 117, 118, 123ltletrd 8393 . . . . . . . . . . . . 13 ((((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) ∧ 𝑧 < inf({𝑣, 𝐶}, ℝ, < )) → 𝑧 < 𝑣)
125124ex 115 . . . . . . . . . . . 12 (((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) ∧ 𝑧𝐴) → (𝑧 < inf({𝑣, 𝐶}, ℝ, < ) → 𝑧 < 𝑣))
126125ralimdva 2554 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → (∀𝑧𝐴 𝑧 < inf({𝑣, 𝐶}, ℝ, < ) → ∀𝑧𝐴 𝑧 < 𝑣))
127114, 126orim12d 787 . . . . . . . . . 10 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → ((∃𝑧𝐴 sup({𝑢, 𝐵}, ℝ, < ) < 𝑧 ∨ ∀𝑧𝐴 𝑧 < inf({𝑣, 𝐶}, ℝ, < )) → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣)))
12898, 127mpd 13 . . . . . . . . 9 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) ∧ 𝐵 < 𝑣) → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣))
129 simplr 528 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) → 𝑢 < 𝑣)
130 simpllr 534 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) → 𝑣 ∈ ℝ)
131 axltwlin 8038 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑢 < 𝑣 → (𝑢 < 𝐵𝐵 < 𝑣)))
13227, 130, 29, 131syl3anc 1248 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) → (𝑢 < 𝑣 → (𝑢 < 𝐵𝐵 < 𝑣)))
133129, 132mpd 13 . . . . . . . . 9 (((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) → (𝑢 < 𝐵𝐵 < 𝑣))
13445, 128, 133mpjaodan 799 . . . . . . . 8 (((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝑢 < 𝐶) → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣))
1356ad5antr 496 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝐴 ⊆ ℝ)
136 simpr 110 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝑧𝐴)
137135, 136sseldd 3168 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
1383ad5antr 496 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝐶 ∈ ℝ)
139 simp-4r 542 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝑣 ∈ ℝ)
14013ad5antr 496 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝐵 ∈ ℝ*)
14115ad5antr 496 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝐶 ∈ ℝ*)
1421ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝐴 ⊆ (𝐵[,]𝐶))
143142, 136sseldd 3168 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝑧 ∈ (𝐵[,]𝐶))
144 iccleub 9944 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ (𝐵[,]𝐶)) → 𝑧𝐶)
145140, 141, 143, 144syl3anc 1248 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝑧𝐶)
146 simplr 528 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝐶 < 𝑣)
147137, 138, 139, 145, 146lelttrd 8095 . . . . . . . . . 10 ((((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) ∧ 𝑧𝐴) → 𝑧 < 𝑣)
148147ralrimiva 2560 . . . . . . . . 9 (((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) → ∀𝑧𝐴 𝑧 < 𝑣)
149148olcd 735 . . . . . . . 8 (((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) ∧ 𝐶 < 𝑣) → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣))
150 axltwlin 8038 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑢 < 𝑣 → (𝑢 < 𝐶𝐶 < 𝑣)))
151100, 119, 120, 150syl3anc 1248 . . . . . . . . 9 (((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → (𝑢 < 𝑣 → (𝑢 < 𝐶𝐶 < 𝑣)))
152151imp 124 . . . . . . . 8 ((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) → (𝑢 < 𝐶𝐶 < 𝑣))
153134, 149, 152mpjaodan 799 . . . . . . 7 ((((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ 𝑢 < 𝑣) → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣))
154153ex 115 . . . . . 6 (((𝜑𝑢 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → (𝑢 < 𝑣 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣)))
155154ralrimiva 2560 . . . . 5 ((𝜑𝑢 ∈ ℝ) → ∀𝑣 ∈ ℝ (𝑢 < 𝑣 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣)))
156155ralrimiva 2560 . . . 4 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ (𝑢 < 𝑣 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣)))
157 breq2 4019 . . . . . . 7 (𝑣 = 𝑦 → (𝑢 < 𝑣𝑢 < 𝑦))
158 breq2 4019 . . . . . . . . 9 (𝑣 = 𝑦 → (𝑧 < 𝑣𝑧 < 𝑦))
159158ralbidv 2487 . . . . . . . 8 (𝑣 = 𝑦 → (∀𝑧𝐴 𝑧 < 𝑣 ↔ ∀𝑧𝐴 𝑧 < 𝑦))
160159orbi2d 791 . . . . . . 7 (𝑣 = 𝑦 → ((∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣) ↔ (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
161157, 160imbi12d 234 . . . . . 6 (𝑣 = 𝑦 → ((𝑢 < 𝑣 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣)) ↔ (𝑢 < 𝑦 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))))
162161cbvralv 2715 . . . . 5 (∀𝑣 ∈ ℝ (𝑢 < 𝑣 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣)) ↔ ∀𝑦 ∈ ℝ (𝑢 < 𝑦 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
163162ralbii 2493 . . . 4 (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ (𝑢 < 𝑣 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑣)) ↔ ∀𝑢 ∈ ℝ ∀𝑦 ∈ ℝ (𝑢 < 𝑦 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
164156, 163sylib 122 . . 3 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑦 ∈ ℝ (𝑢 < 𝑦 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
165 breq1 4018 . . . . . 6 (𝑢 = 𝑥 → (𝑢 < 𝑦𝑥 < 𝑦))
166 breq1 4018 . . . . . . . 8 (𝑢 = 𝑥 → (𝑢 < 𝑧𝑥 < 𝑧))
167166rexbidv 2488 . . . . . . 7 (𝑢 = 𝑥 → (∃𝑧𝐴 𝑢 < 𝑧 ↔ ∃𝑧𝐴 𝑥 < 𝑧))
168167orbi1d 792 . . . . . 6 (𝑢 = 𝑥 → ((∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦) ↔ (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
169165, 168imbi12d 234 . . . . 5 (𝑢 = 𝑥 → ((𝑢 < 𝑦 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)) ↔ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))))
170169ralbidv 2487 . . . 4 (𝑢 = 𝑥 → (∀𝑦 ∈ ℝ (𝑢 < 𝑦 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))))
171170cbvralv 2715 . . 3 (∀𝑢 ∈ ℝ ∀𝑦 ∈ ℝ (𝑢 < 𝑦 → (∃𝑧𝐴 𝑢 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
172164, 171sylib 122 . 2 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
173 axsuploc 8043 . 2 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
1746, 7, 24, 172, 173syl22anc 1249 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 979   = wceq 1363  wex 1502  wcel 2158  wral 2465  wrex 2466  wss 3141  {cpr 3605   class class class wbr 4015  (class class class)co 5888  supcsup 6994  infcinf 6995  cr 7823  1c1 7825   + caddc 7827  *cxr 8004   < clt 8005  cle 8006  [,]cicc 9904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944  ax-pre-suploc 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-sup 6996  df-inf 6997  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-rp 9667  df-icc 9908  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021
This theorem is referenced by:  suplociccex  14374
  Copyright terms: Public domain W3C validator