ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloc GIF version

Theorem caucvgprprlemloc 7644
Description: Lemma for caucvgprpr 7653. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemloc (𝜑 → ∀𝑠Q𝑡Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙,𝑟   𝑢,𝐹,𝑟   𝑞,𝑝,𝑠,𝑡   𝜑,𝑠,𝑡   𝑝,𝑙,𝑞,𝑠,𝑡,𝑟   𝑢,𝑝,𝑞,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑠,𝑞,𝑝)   𝐿(𝑢,𝑡,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemloc
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7350 . . . . 5 (𝑠 <Q 𝑡 → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑡)
21adantl 275 . . . 4 (((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑡)
3 subhalfnqq 7355 . . . . . 6 (𝑦Q → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
43ad2antrl 482 . . . . 5 ((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
5 archrecnq 7604 . . . . . . 7 (𝑥Q → ∃𝑐N (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)
65ad2antrl 482 . . . . . 6 (((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → ∃𝑐N (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)
7 simpllr 524 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → 𝑠 <Q 𝑡)
87adantr 274 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → 𝑠 <Q 𝑡)
9 simplrl 525 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → 𝑦Q)
109adantr 274 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → 𝑦Q)
11 simplrr 526 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 +Q 𝑦) = 𝑡)
1211adantr 274 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q 𝑦) = 𝑡)
13 simplrl 525 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → 𝑥Q)
14 simplrr 526 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (𝑥 +Q 𝑥) <Q 𝑦)
15 simprl 521 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → 𝑐N)
16 simprr 522 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)
178, 10, 12, 13, 14, 15, 16caucvgprprlemloccalc 7625 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
18 simplrl 525 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) → 𝑠Q)
1918ad3antrrr 484 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → 𝑠Q)
20 nnnq 7363 . . . . . . . . . . . . . 14 (𝑐N → [⟨𝑐, 1o⟩] ~QQ)
2120ad2antrl 482 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → [⟨𝑐, 1o⟩] ~QQ)
22 recclnq 7333 . . . . . . . . . . . . 13 ([⟨𝑐, 1o⟩] ~QQ → (*Q‘[⟨𝑐, 1o⟩] ~Q ) ∈ Q)
2321, 22syl 14 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑐, 1o⟩] ~Q ) ∈ Q)
24 addclnq 7316 . . . . . . . . . . . 12 ((𝑠Q ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∈ Q)
2519, 23, 24syl2anc 409 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∈ Q)
26 nqprlu 7488 . . . . . . . . . . 11 ((𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∈ Q → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ ∈ P)
2725, 26syl 14 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ ∈ P)
28 nqprlu 7488 . . . . . . . . . . 11 ((*Q‘[⟨𝑐, 1o⟩] ~Q ) ∈ Q → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
2923, 28syl 14 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
30 addclpr 7478 . . . . . . . . . 10 ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
3127, 29, 30syl2anc 409 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
32 simplrr 526 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) → 𝑡Q)
3332ad3antrrr 484 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → 𝑡Q)
34 nqprlu 7488 . . . . . . . . . 10 (𝑡Q → ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P)
3533, 34syl 14 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P)
36 caucvgprpr.f . . . . . . . . . . . 12 (𝜑𝐹:NP)
3736ad5antr 488 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → 𝐹:NP)
3837, 15ffvelrnd 5621 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (𝐹𝑐) ∈ P)
39 ltrelnq 7306 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
4039brel 4656 . . . . . . . . . . . . 13 ((*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥 → ((*Q‘[⟨𝑐, 1o⟩] ~Q ) ∈ Q𝑥Q))
4140simpld 111 . . . . . . . . . . . 12 ((*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥 → (*Q‘[⟨𝑐, 1o⟩] ~Q ) ∈ Q)
4241ad2antll 483 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑐, 1o⟩] ~Q ) ∈ Q)
4342, 28syl 14 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
44 addclpr 7478 . . . . . . . . . 10 (((𝐹𝑐) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4538, 43, 44syl2anc 409 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
46 ltsopr 7537 . . . . . . . . . 10 <P Or P
47 sowlin 4298 . . . . . . . . . 10 ((<P Or P ∧ ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)) → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)))
4846, 47mpan 421 . . . . . . . . 9 (((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P) → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)))
4931, 35, 45, 48syl3anc 1228 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)))
5017, 49mpd 13 . . . . . . 7 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
5119adantr 274 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → 𝑠Q)
52 simplrl 525 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → 𝑐N)
53 simpr 109 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩))
54 ltaprg 7560 . . . . . . . . . . . . . 14 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
5554adantl 275 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
5642adantr 274 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (*Q‘[⟨𝑐, 1o⟩] ~Q ) ∈ Q)
5751, 56, 24syl2anc 409 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) ∈ Q)
5857, 26syl 14 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ ∈ P)
5938adantr 274 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (𝐹𝑐) ∈ P)
6056, 28syl 14 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
61 addcomprg 7519 . . . . . . . . . . . . . 14 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
6261adantl 275 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
6355, 58, 59, 60, 62caovord2d 6011 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑐) ↔ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)))
6453, 63mpbird 166 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑐))
65 opeq1 3758 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → ⟨𝑎, 1o⟩ = ⟨𝑐, 1o⟩)
6665eceq1d 6537 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑐 → [⟨𝑎, 1o⟩] ~Q = [⟨𝑐, 1o⟩] ~Q )
6766fveq2d 5490 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 → (*Q‘[⟨𝑎, 1o⟩] ~Q ) = (*Q‘[⟨𝑐, 1o⟩] ~Q ))
6867oveq2d 5858 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑐 → (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))
6968breq2d 3994 . . . . . . . . . . . . . . 15 (𝑎 = 𝑐 → (𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))))
7069abbidv 2284 . . . . . . . . . . . . . 14 (𝑎 = 𝑐 → {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))})
7168breq1d 3992 . . . . . . . . . . . . . . 15 (𝑎 = 𝑐 → ((𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞))
7271abbidv 2284 . . . . . . . . . . . . . 14 (𝑎 = 𝑐 → {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞})
7370, 72opeq12d 3766 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩)
74 fveq2 5486 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → (𝐹𝑎) = (𝐹𝑐))
7573, 74breq12d 3995 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑐)))
7675rspcev 2830 . . . . . . . . . . 11 ((𝑐N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑐)) → ∃𝑎N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎))
7752, 64, 76syl2anc 409 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → ∃𝑎N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎))
78 caucvgprpr.lim . . . . . . . . . . 11 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
7978caucvgprprlemell 7626 . . . . . . . . . 10 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑎N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎)))
8051, 77, 79sylanbrc 414 . . . . . . . . 9 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)) → 𝑠 ∈ (1st𝐿))
8180ex 114 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) → 𝑠 ∈ (1st𝐿)))
8233adantr 274 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) → 𝑡Q)
83 fveq2 5486 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → (𝐹𝑏) = (𝐹𝑐))
84 opeq1 3758 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑐 → ⟨𝑏, 1o⟩ = ⟨𝑐, 1o⟩)
8584eceq1d 6537 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑐 → [⟨𝑏, 1o⟩] ~Q = [⟨𝑐, 1o⟩] ~Q )
8685fveq2d 5490 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑐 → (*Q‘[⟨𝑏, 1o⟩] ~Q ) = (*Q‘[⟨𝑐, 1o⟩] ~Q ))
8786breq2d 3994 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → (𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )))
8887abbidv 2284 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → {𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )})
8986breq1d 3992 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞))
9089abbidv 2284 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞})
9188, 90opeq12d 3766 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)
9283, 91oveq12d 5860 . . . . . . . . . . . . 13 (𝑏 = 𝑐 → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩))
9392breq1d 3992 . . . . . . . . . . . 12 (𝑏 = 𝑐 → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ↔ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
9493rspcev 2830 . . . . . . . . . . 11 ((𝑐N ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
9515, 94sylan 281 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
9678caucvgprprlemelu 7627 . . . . . . . . . 10 (𝑡 ∈ (2nd𝐿) ↔ (𝑡Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
9782, 95, 96sylanbrc 414 . . . . . . . . 9 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) → 𝑡 ∈ (2nd𝐿))
9897ex 114 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ → 𝑡 ∈ (2nd𝐿)))
9981, 98orim12d 776 . . . . . . 7 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1o⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))
10050, 99mpd 13 . . . . . 6 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1o⟩] ~Q ) <Q 𝑥)) → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿)))
1016, 100rexlimddv 2588 . . . . 5 (((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿)))
1024, 101rexlimddv 2588 . . . 4 ((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿)))
1032, 102rexlimddv 2588 . . 3 (((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿)))
104103ex 114 . 2 ((𝜑 ∧ (𝑠Q𝑡Q)) → (𝑠 <Q 𝑡 → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))
105104ralrimivva 2548 1 (𝜑 → ∀𝑠Q𝑡Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 968   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  {crab 2448  cop 3579   class class class wbr 3982   Or wor 4273  wf 5184  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  1oc1o 6377  [cec 6499  Ncnpi 7213   <N clti 7216   ~Q ceq 7220  Qcnq 7221   +Q cplq 7223  *Qcrq 7225   <Q cltq 7226  Pcnp 7232   +P cpp 7234  <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  caucvgprprlemcl  7645
  Copyright terms: Public domain W3C validator