| Step | Hyp | Ref
| Expression |
| 1 | | ltexnqi 7476 |
. . . . 5
⊢ (𝑠 <Q
𝑡 → ∃𝑦 ∈ Q (𝑠 +Q
𝑦) = 𝑡) |
| 2 | 1 | adantl 277 |
. . . 4
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑡 ∈ Q)) ∧
𝑠
<Q 𝑡) → ∃𝑦 ∈ Q (𝑠 +Q 𝑦) = 𝑡) |
| 3 | | subhalfnqq 7481 |
. . . . . 6
⊢ (𝑦 ∈ Q →
∃𝑥 ∈
Q (𝑥
+Q 𝑥) <Q 𝑦) |
| 4 | 3 | ad2antrl 490 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑡 ∈ Q)) ∧
𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) → ∃𝑥 ∈ Q (𝑥 +Q 𝑥) <Q
𝑦) |
| 5 | | archrecnq 7730 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
∃𝑐 ∈
N (*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥) |
| 6 | 5 | ad2antrl 490 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) → ∃𝑐 ∈ N
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥) |
| 7 | | simpllr 534 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) → 𝑠 <Q 𝑡) |
| 8 | 7 | adantr 276 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → 𝑠 <Q 𝑡) |
| 9 | | simplrl 535 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) → 𝑦 ∈ Q) |
| 10 | 9 | adantr 276 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → 𝑦 ∈ Q) |
| 11 | | simplrr 536 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) → (𝑠 +Q 𝑦) = 𝑡) |
| 12 | 11 | adantr 276 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 +Q 𝑦) = 𝑡) |
| 13 | | simplrl 535 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → 𝑥 ∈ Q) |
| 14 | | simplrr 536 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → (𝑥 +Q 𝑥) <Q
𝑦) |
| 15 | | simprl 529 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → 𝑐 ∈ N) |
| 16 | | simprr 531 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) →
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥) |
| 17 | 8, 10, 12, 13, 14, 15, 16 | caucvgprprlemloccalc 7751 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) |
| 18 | | simplrl 535 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑡 ∈ Q)) ∧
𝑠
<Q 𝑡) → 𝑠 ∈ Q) |
| 19 | 18 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → 𝑠 ∈ Q) |
| 20 | | nnnq 7489 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ N →
[〈𝑐,
1o〉] ~Q ∈
Q) |
| 21 | 20 | ad2antrl 490 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → [〈𝑐, 1o〉]
~Q ∈ Q) |
| 22 | | recclnq 7459 |
. . . . . . . . . . . . 13
⊢
([〈𝑐,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑐, 1o〉]
~Q ) ∈ Q) |
| 23 | 21, 22 | syl 14 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) →
(*Q‘[〈𝑐, 1o〉]
~Q ) ∈ Q) |
| 24 | | addclnq 7442 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) ∈ Q) → (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∈ Q) |
| 25 | 19, 23, 24 | syl2anc 411 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∈ Q) |
| 26 | | nqprlu 7614 |
. . . . . . . . . . 11
⊢ ((𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∈ Q → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉 ∈
P) |
| 27 | 25, 26 | syl 14 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉 ∈
P) |
| 28 | | nqprlu 7614 |
. . . . . . . . . . 11
⊢
((*Q‘[〈𝑐, 1o〉]
~Q ) ∈ Q → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 29 | 23, 28 | syl 14 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 30 | | addclpr 7604 |
. . . . . . . . . 10
⊢
((〈{𝑝 ∣
𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉 ∈ P
∧ 〈{𝑝 ∣
𝑝
<Q (*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
(〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
| 31 | 27, 29, 30 | syl2anc 411 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
| 32 | | simplrr 536 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑡 ∈ Q)) ∧
𝑠
<Q 𝑡) → 𝑡 ∈ Q) |
| 33 | 32 | ad3antrrr 492 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → 𝑡 ∈ Q) |
| 34 | | nqprlu 7614 |
. . . . . . . . . 10
⊢ (𝑡 ∈ Q →
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉 ∈
P) |
| 35 | 33, 34 | syl 14 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉 ∈
P) |
| 36 | | caucvgprpr.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:N⟶P) |
| 37 | 36 | ad5antr 496 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → 𝐹:N⟶P) |
| 38 | 37, 15 | ffvelcdmd 5698 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → (𝐹‘𝑐) ∈ P) |
| 39 | | ltrelnq 7432 |
. . . . . . . . . . . . . 14
⊢
<Q ⊆ (Q ×
Q) |
| 40 | 39 | brel 4715 |
. . . . . . . . . . . . 13
⊢
((*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥 →
((*Q‘[〈𝑐, 1o〉]
~Q ) ∈ Q ∧ 𝑥 ∈ Q)) |
| 41 | 40 | simpld 112 |
. . . . . . . . . . . 12
⊢
((*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥 →
(*Q‘[〈𝑐, 1o〉]
~Q ) ∈ Q) |
| 42 | 41 | ad2antll 491 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) →
(*Q‘[〈𝑐, 1o〉]
~Q ) ∈ Q) |
| 43 | 42, 28 | syl 14 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 44 | | addclpr 7604 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑐) ∈ P ∧ 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
| 45 | 38, 43, 44 | syl2anc 411 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → ((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) |
| 46 | | ltsopr 7663 |
. . . . . . . . . 10
⊢
<P Or P |
| 47 | | sowlin 4355 |
. . . . . . . . . 10
⊢
((<P Or P ∧ ((〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P ∧
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉 ∈ P
∧ ((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P)) →
((〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉 → ((〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∨ ((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉))) |
| 48 | 46, 47 | mpan 424 |
. . . . . . . . 9
⊢
(((〈{𝑝 ∣
𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P ∧
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉 ∈ P
∧ ((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P) →
((〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉 → ((〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∨ ((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉))) |
| 49 | 31, 35, 45, 48 | syl3anc 1249 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → ((〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉 → ((〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∨ ((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉))) |
| 50 | 17, 49 | mpd 13 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → ((〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∨ ((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉)) |
| 51 | 19 | adantr 276 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) → 𝑠 ∈ Q) |
| 52 | | simplrl 535 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) → 𝑐 ∈ N) |
| 53 | | simpr 110 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 54 | | ltaprg 7686 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) |
| 55 | 54 | adantl 277 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧
ℎ ∈ P))
→ (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) |
| 56 | 42 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) →
(*Q‘[〈𝑐, 1o〉]
~Q ) ∈ Q) |
| 57 | 51, 56, 24 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) → (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) ∈ Q) |
| 58 | 57, 26 | syl 14 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉 ∈
P) |
| 59 | 38 | adantr 276 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) → (𝐹‘𝑐) ∈ P) |
| 60 | 56, 28 | syl 14 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 61 | | addcomprg 7645 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
| 62 | 61 | adantl 277 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) →
(𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
| 63 | 55, 58, 59, 60, 62 | caovord2d 6093 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑐) ↔ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉))) |
| 64 | 53, 63 | mpbird 167 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑐)) |
| 65 | | opeq1 3808 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑐 → 〈𝑎, 1o〉 = 〈𝑐,
1o〉) |
| 66 | 65 | eceq1d 6628 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑐 → [〈𝑎, 1o〉]
~Q = [〈𝑐, 1o〉]
~Q ) |
| 67 | 66 | fveq2d 5562 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑐 →
(*Q‘[〈𝑎, 1o〉]
~Q ) = (*Q‘[〈𝑐, 1o〉]
~Q )) |
| 68 | 67 | oveq2d 5938 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑐 → (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))) |
| 69 | 68 | breq2d 4045 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑐 → (𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )))) |
| 70 | 69 | abbidv 2314 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑐 → {𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}) |
| 71 | 68 | breq1d 4043 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑐 → ((𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞)) |
| 72 | 71 | abbidv 2314 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑐 → {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}) |
| 73 | 70, 72 | opeq12d 3816 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑐 → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉) |
| 74 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑐 → (𝐹‘𝑎) = (𝐹‘𝑐)) |
| 75 | 73, 74 | breq12d 4046 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑐))) |
| 76 | 75 | rspcev 2868 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑐)) → ∃𝑎 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎)) |
| 77 | 52, 64, 76 | syl2anc 411 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) → ∃𝑎 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎)) |
| 78 | | caucvgprpr.lim |
. . . . . . . . . . 11
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
| 79 | 78 | caucvgprprlemell 7752 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑎 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎))) |
| 80 | 51, 77, 79 | sylanbrc 417 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) → 𝑠 ∈ (1st ‘𝐿)) |
| 81 | 80 | ex 115 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → ((〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) → 𝑠 ∈ (1st ‘𝐿))) |
| 82 | 33 | adantr 276 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ ((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) → 𝑡 ∈
Q) |
| 83 | | fveq2 5558 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑐 → (𝐹‘𝑏) = (𝐹‘𝑐)) |
| 84 | | opeq1 3808 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑐 → 〈𝑏, 1o〉 = 〈𝑐,
1o〉) |
| 85 | 84 | eceq1d 6628 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑐 → [〈𝑏, 1o〉]
~Q = [〈𝑐, 1o〉]
~Q ) |
| 86 | 85 | fveq2d 5562 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑐 →
(*Q‘[〈𝑏, 1o〉]
~Q ) = (*Q‘[〈𝑐, 1o〉]
~Q )) |
| 87 | 86 | breq2d 4045 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑐 → (𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q ) ↔ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q ))) |
| 88 | 87 | abbidv 2314 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )} = {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}) |
| 89 | 86 | breq1d 4043 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑐 →
((*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞 ↔
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞)) |
| 90 | 89 | abbidv 2314 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞} = {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}) |
| 91 | 88, 90 | opeq12d 3816 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑐 → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) |
| 92 | 83, 91 | oveq12d 5940 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑐 → ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) = ((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 93 | 92 | breq1d 4043 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑐 → (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉 ↔ ((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉)) |
| 94 | 93 | rspcev 2868 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ N ∧
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) → ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) |
| 95 | 15, 94 | sylan 283 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ ((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) → ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) |
| 96 | 78 | caucvgprprlemelu 7753 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (2nd
‘𝐿) ↔ (𝑡 ∈ Q ∧
∃𝑏 ∈
N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉)) |
| 97 | 82, 95, 96 | sylanbrc 417 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) ∧ ((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) → 𝑡 ∈ (2nd
‘𝐿)) |
| 98 | 97 | ex 115 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → (((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉 → 𝑡 ∈ (2nd
‘𝐿))) |
| 99 | 81, 98 | orim12d 787 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → (((〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑐, 1o〉]
~Q )) <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑐) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉) ∨ ((𝐹‘𝑐) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑐, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) → (𝑠 ∈ (1st
‘𝐿) ∨ 𝑡 ∈ (2nd
‘𝐿)))) |
| 100 | 50, 99 | mpd 13 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) ∧ (𝑐 ∈ N ∧
(*Q‘[〈𝑐, 1o〉]
~Q ) <Q 𝑥)) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑡 ∈ (2nd ‘𝐿))) |
| 101 | 6, 100 | rexlimddv 2619 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑠 ∈ Q ∧
𝑡 ∈ Q))
∧ 𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) ∧ (𝑥 ∈ Q ∧ (𝑥 +Q
𝑥)
<Q 𝑦)) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑡 ∈ (2nd ‘𝐿))) |
| 102 | 4, 101 | rexlimddv 2619 |
. . . 4
⊢ ((((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑡 ∈ Q)) ∧
𝑠
<Q 𝑡) ∧ (𝑦 ∈ Q ∧ (𝑠 +Q
𝑦) = 𝑡)) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑡 ∈ (2nd ‘𝐿))) |
| 103 | 2, 102 | rexlimddv 2619 |
. . 3
⊢ (((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑡 ∈ Q)) ∧
𝑠
<Q 𝑡) → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑡 ∈ (2nd ‘𝐿))) |
| 104 | 103 | ex 115 |
. 2
⊢ ((𝜑 ∧ (𝑠 ∈ Q ∧ 𝑡 ∈ Q)) →
(𝑠
<Q 𝑡 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑡 ∈ (2nd ‘𝐿)))) |
| 105 | 104 | ralrimivva 2579 |
1
⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑡 ∈ Q (𝑠 <Q
𝑡 → (𝑠 ∈ (1st
‘𝐿) ∨ 𝑡 ∈ (2nd
‘𝐿)))) |