Proof of Theorem caucvgprprlemlim
Step | Hyp | Ref
| Expression |
1 | | archrecpr 7605 |
. . . 4
⊢ (𝑥 ∈ P →
∃𝑗 ∈
N 〈{𝑙
∣ 𝑙
<Q (*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) |
2 | 1 | adantl 275 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ P) → ∃𝑗 ∈ N
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) |
3 | | caucvgprpr.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:N⟶P) |
4 | 3 | ad5antr 488 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ P) ∧
𝑗 ∈ N)
∧ 〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) ∧ 𝑘 ∈ N) ∧ 𝑗 <N
𝑘) → 𝐹:N⟶P) |
5 | | caucvgprpr.cau |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
6 | 5 | ad5antr 488 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ P) ∧
𝑗 ∈ N)
∧ 〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) ∧ 𝑘 ∈ N) ∧ 𝑗 <N
𝑘) → ∀𝑛 ∈ N
∀𝑘 ∈
N (𝑛
<N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
7 | | caucvgprpr.bnd |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) |
8 | 7 | ad5antr 488 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ P) ∧
𝑗 ∈ N)
∧ 〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) ∧ 𝑘 ∈ N) ∧ 𝑗 <N
𝑘) → ∀𝑚 ∈ N 𝐴<P
(𝐹‘𝑚)) |
9 | | caucvgprpr.lim |
. . . . . . . . 9
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
10 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ P) → 𝑥 ∈
P) |
11 | 10 | ad4antr 486 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ P) ∧
𝑗 ∈ N)
∧ 〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) ∧ 𝑘 ∈ N) ∧ 𝑗 <N
𝑘) → 𝑥 ∈
P) |
12 | | simpr 109 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ P) ∧
𝑗 ∈ N)
∧ 〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) ∧ 𝑘 ∈ N) ∧ 𝑗 <N
𝑘) → 𝑗 <N
𝑘) |
13 | | simpllr 524 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ P) ∧
𝑗 ∈ N)
∧ 〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) ∧ 𝑘 ∈ N) ∧ 𝑗 <N
𝑘) → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) |
14 | 4, 6, 8, 9, 11, 12, 13 | caucvgprprlem1 7650 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ P) ∧
𝑗 ∈ N)
∧ 〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) ∧ 𝑘 ∈ N) ∧ 𝑗 <N
𝑘) → (𝐹‘𝑘)<P (𝐿 +P
𝑥)) |
15 | 4, 6, 8, 9, 11, 12, 13 | caucvgprprlem2 7651 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ P) ∧
𝑗 ∈ N)
∧ 〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) ∧ 𝑘 ∈ N) ∧ 𝑗 <N
𝑘) → 𝐿<P ((𝐹‘𝑘) +P 𝑥)) |
16 | 14, 15 | jca 304 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑥 ∈ P) ∧
𝑗 ∈ N)
∧ 〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) ∧ 𝑘 ∈ N) ∧ 𝑗 <N
𝑘) → ((𝐹‘𝑘)<P (𝐿 +P
𝑥) ∧ 𝐿<P ((𝐹‘𝑘) +P 𝑥))) |
17 | 16 | ex 114 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑥 ∈ P) ∧
𝑗 ∈ N)
∧ 〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) ∧ 𝑘 ∈ N) → (𝑗 <N
𝑘 → ((𝐹‘𝑘)<P (𝐿 +P
𝑥) ∧ 𝐿<P ((𝐹‘𝑘) +P 𝑥)))) |
18 | 17 | ralrimiva 2539 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ P) ∧ 𝑗 ∈ N) ∧
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥) → ∀𝑘 ∈ N (𝑗 <N
𝑘 → ((𝐹‘𝑘)<P (𝐿 +P
𝑥) ∧ 𝐿<P ((𝐹‘𝑘) +P 𝑥)))) |
19 | 18 | ex 114 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ P) ∧ 𝑗 ∈ N) →
(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥 → ∀𝑘 ∈ N (𝑗 <N
𝑘 → ((𝐹‘𝑘)<P (𝐿 +P
𝑥) ∧ 𝐿<P ((𝐹‘𝑘) +P 𝑥))))) |
20 | 19 | reximdva 2568 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ P) → (∃𝑗 ∈ N
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑗, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑢}〉<P 𝑥 → ∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → ((𝐹‘𝑘)<P (𝐿 +P
𝑥) ∧ 𝐿<P ((𝐹‘𝑘) +P 𝑥))))) |
21 | 2, 20 | mpd 13 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ P) → ∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → ((𝐹‘𝑘)<P (𝐿 +P
𝑥) ∧ 𝐿<P ((𝐹‘𝑘) +P 𝑥)))) |
22 | 21 | ralrimiva 2539 |
1
⊢ (𝜑 → ∀𝑥 ∈ P ∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → ((𝐹‘𝑘)<P (𝐿 +P
𝑥) ∧ 𝐿<P ((𝐹‘𝑘) +P 𝑥)))) |