ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemlim GIF version

Theorem caucvgprprlemlim 7771
Description: Lemma for caucvgprpr 7772. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemlim (𝜑 → ∀𝑥P𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹𝑘) +P 𝑥))))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟,𝑗   𝑢,𝐹,𝑟,𝑙,𝑘,𝑛   𝜑,𝑘,𝑟   𝑘,𝐿   𝑗,𝑘,𝜑,𝑥   𝑘,𝑙,𝑢,𝑝,𝑞,𝑟   𝑗,𝑟,𝑥   𝑞,𝑙,𝑟   𝑢,𝑝,𝑞,𝑟   𝑚,𝑟   𝑘,𝑛,𝑢,𝑙   𝑗,𝑙,𝑢   𝑛,𝑟
Allowed substitution hints:   𝜑(𝑢,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑥,𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑥,𝑗,𝑞,𝑝)   𝐿(𝑥,𝑢,𝑗,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemlim
StepHypRef Expression
1 archrecpr 7724 . . . 4 (𝑥P → ∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥)
21adantl 277 . . 3 ((𝜑𝑥P) → ∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥)
3 caucvgprpr.f . . . . . . . . . 10 (𝜑𝐹:NP)
43ad5antr 496 . . . . . . . . 9 ((((((𝜑𝑥P) ∧ 𝑗N) ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝐹:NP)
5 caucvgprpr.cau . . . . . . . . . 10 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
65ad5antr 496 . . . . . . . . 9 ((((((𝜑𝑥P) ∧ 𝑗N) ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
7 caucvgprpr.bnd . . . . . . . . . 10 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
87ad5antr 496 . . . . . . . . 9 ((((((𝜑𝑥P) ∧ 𝑗N) ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ∀𝑚N 𝐴<P (𝐹𝑚))
9 caucvgprpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
10 simpr 110 . . . . . . . . . 10 ((𝜑𝑥P) → 𝑥P)
1110ad4antr 494 . . . . . . . . 9 ((((((𝜑𝑥P) ∧ 𝑗N) ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝑥P)
12 simpr 110 . . . . . . . . 9 ((((((𝜑𝑥P) ∧ 𝑗N) ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝑗 <N 𝑘)
13 simpllr 534 . . . . . . . . 9 ((((((𝜑𝑥P) ∧ 𝑗N) ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥)
144, 6, 8, 9, 11, 12, 13caucvgprprlem1 7769 . . . . . . . 8 ((((((𝜑𝑥P) ∧ 𝑗N) ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → (𝐹𝑘)<P (𝐿 +P 𝑥))
154, 6, 8, 9, 11, 12, 13caucvgprprlem2 7770 . . . . . . . 8 ((((((𝜑𝑥P) ∧ 𝑗N) ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → 𝐿<P ((𝐹𝑘) +P 𝑥))
1614, 15jca 306 . . . . . . 7 ((((((𝜑𝑥P) ∧ 𝑗N) ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥) ∧ 𝑘N) ∧ 𝑗 <N 𝑘) → ((𝐹𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹𝑘) +P 𝑥)))
1716ex 115 . . . . . 6 (((((𝜑𝑥P) ∧ 𝑗N) ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥) ∧ 𝑘N) → (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹𝑘) +P 𝑥))))
1817ralrimiva 2567 . . . . 5 ((((𝜑𝑥P) ∧ 𝑗N) ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥) → ∀𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹𝑘) +P 𝑥))))
1918ex 115 . . . 4 (((𝜑𝑥P) ∧ 𝑗N) → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥 → ∀𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹𝑘) +P 𝑥)))))
2019reximdva 2596 . . 3 ((𝜑𝑥P) → (∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹𝑘) +P 𝑥)))))
212, 20mpd 13 . 2 ((𝜑𝑥P) → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹𝑘) +P 𝑥))))
2221ralrimiva 2567 1 (𝜑 → ∀𝑥P𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹𝑘) +P 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {cab 2179  wral 2472  wrex 2473  {crab 2476  cop 3621   class class class wbr 4029  wf 5250  cfv 5254  (class class class)co 5918  1oc1o 6462  [cec 6585  Ncnpi 7332   <N clti 7335   ~Q ceq 7339  Qcnq 7340   +Q cplq 7342  *Qcrq 7344   <Q cltq 7345  Pcnp 7351   +P cpp 7353  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-iltp 7530
This theorem is referenced by:  caucvgprpr  7772
  Copyright terms: Public domain W3C validator